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EIGENVALUES OF THE LAPLACIAN IN A DOMAIN WITH A THIN
TUBULAR HOLE

SHUICHI JIMBO

ABSTRACT. We deal with the eigenvalues of the Laplacian in a domain with a thin
tubular hole. We impose the Robin or the Neumann B.C on the boundary of the hole and
investigate the detailed asymptotic behavior of the eigenvalues when the hole becomes
thinner and shrinks to a lower dimensional manifold.

1. INTRODUCTION

Let Q@ C R™ a bounded domain with a smooth boundary. We consider the eigenvalue
problem of the Laplacian,

(1.1) ADP+AP=0 in Q  ®=0 on 0.

It is known that (1.1) is a spectral problem of a self-adjoint operator with a compact resolvent
and so the set of the eigenvalues is an unbounded discrete sequence of positive values { A, }72
(cf. Courant-Hilbert [7], Edmunds-Evans [10], Davies [9]). For later use, we denote the
corresponding orthonormal eigenfunctions by {®,}52, C L?(Q) i.e.

(1.2) ((I)k,‘l)g)L?,(Q) = 5(k,€) (k‘,e S N)

Here 6(k, ¢) is the Kronecker delta symbol. It is known that each ®;, is smooth in Q from the
regularity theory for the elliptic equation with smooth coefficients (cf. Gilbarg-Trudinger
[13], Evans [11]).

The basic subject in the present paper is to consider the perturbation of each eigenvalue
under domain variation of a certain singular type. More precisely, we deal with the domain
with a thin tubular hole and look into the asymptotic behavior of the eigenvalue when
the tubular hole becomes thinner and shrinks to a low dimensional submanifold. For the
formulation of the problem, we define the singularly peturbed domain Q(e) as follows.

Let M be a m—dimensional smooth submanifold of R™. Assume that M is compact, ori-
entable and satisfies M C Q. We assume that m < n— 2. Define the tubular neighbhorhood
of M by

B(M,e) = {x € R" | dist(z, M) < €}
(e > 0: small) and define the domain Q(e) by

Q(e) = Q\ B(M,e).
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Put I' = 09, T(M,r) = O0B(M,r) (r > 0) for simplicity of notation. When € > 0 is
small, the measure of (¢) is almost same as that of Q while Q(¢) is topologically different
from Q since new boundary I'(M, €) emerges. So the detailed analysis of the relation of the
eigenvalue problems of the Laplacian in (e) and € seems to be complicated.

For the case that the Dirichlet B.C. is imposed on I'(M,€), a nice perturbation formula
of the eigenvalue AP (¢) has been established through the works due to Besson [2] ('85),
Chavel-Feldman [5] (’88), Courtois [8] (’95), i.e.

M (e)=Ap = {

where S”~™~1 is the unit sphere in R”~™ and "H.O.T.” implies ”a higher order term”.

{(n—m—=2)[S" ™7 [, ®r(£)?ds(&)} "™ 2 +H.O.T. forn—m =3,
{27 [}, Pu(§)%ds(€)} /log(1/e) + HO.T. for n—m = 2.

In this paper we deal with the case of the Robin B.C. or the Neumann B.C. on I'(M,¢).
So we consider the following eigenvalue problems,

AP +AD =0 in Q)

1.3 P
(13) ®=0 on T, 8——}—05”1):0 on T'(M,e).
v
AP+ AP =0 in Qfe),
(1.4) 0P

=0 on T, =0 on I'(M,e).

e
Here v is the unit outward normal vector on 9€Q(e). Note that v is pointing into B(M,€) at
a point on I'(M, €). In this problem, there are important two parameters 7 € (—o0o, 00) and
o > 0, which divide the situation into several different cases.

We can prove that each k—th eigenvalue of Q(e) (with the Robin B.C. or the Neumann
B.C. on T'(M,¢€) ) approaches the original k—th eigenvalue of Q (cf. Proposition 1) for
e — 0. We will look into a detailed behavior of this converegence as a perturbation formula
and understand the dependencies of several parameters in the bondary condition and the
geometric properties of the problem. The behaviors of eigenvalues depend on the several
different cases of the boundary condition on I'(M, ).

Definition 1. We denote the eigenvalues of (1.3) by {A\f(€)}2, and the corresponding

complete orthonormal system by {@ﬁe}zil C L%(Q(e)), respectively.
(. 7 )2 (e = 6(k, 0) (k02 1).

Definition 2. We denote the eigenvalues of (1.4) by {AY(e)}3°, and the corresponding
complete orthonormal system {fl){cv I8, C L(Q(e)), respectively.

(P e Do) 20y = 0(k, 0) (K, € 2 1).
It should be noted that AY () < AF(e) < AP (¢) from the comparison principle of eigen-

values under different boundary conditions (cf. Courant-Hilbert [7](Chapter IV)). We can
justify that the limit values of these eigenvalues for € — 0, agree to \y.



EIGENVALUES OF A DOMAIN WITH A THIN TUBULAR HOLE 139

Proposition 1. For each k € N, it holds that

CONR( N
(1.5) 11_13% A (€) = A, lgr(l) Az (6) = M.
Recall that Ay, is the k—th eigenvalue of (1.1).

Proposition 2. For each k € N, there exist ¢ > 0 and c¢(k) > 0 such that
(1.6) Pie(@)] S c(k),  |@Fc(2)] S (k) (2 €Qe), 0 < e < e).
For any sequence of positive values {e,}52; with limy, , €, = 0, there exists a subsequence

{Go}pZ1 and orthonormal systems of eigenfunctions {®)}32, and {®}}72, of (1.1) corre-
sponding to {\,}32,, respectively such that

(17) ((I);c, ¢2)L2(Q) = (S(]{?,f), ( g, ‘I)IZ/)L2(Q) = 5(]41,5) (k,é S N),
(1.8) plijgo @5 — P4llL2c,) = 0, pli_)fglo @7, — Yl L2, = 0

Remark 1. From the regularity theory of elliptic equations with (1.6), @ﬁcp and <I>,€N7 ¢
converge to ®), and @/, respectively, in C*(2\ B(M,r)) as p — oo for any r > 0 and s € N.

Notation. V is the gradient in R™. V), is the tangential gradient and Vy is the normal
gradient at a point of the manifold M.

Notation. We denote the mean curvature vector field on M by H. H is a kind of a normal
vector field on M. So the vector H(¢) is orthogonal to the tangent space Tz M at any point
& € M. For a function ¢ defined in a tubular neighborhood of M, H acts on ¢ as a differential
in H direction. Actually

HIB)(€) = fim(6( + tH() — 6(€))/t at cach €€ M.

We present the main results of this paper.

Theorem 1. Assume that n —m = q = 3 and Ay is simple in (1.1).

(0) We have

lirg AN (e ) W 1I/ { IV Dyl — |Var il + N\ ®F _@kH[q%}}ds(g)_
(1) Assume T > 1, then we have

tiy AR (e ) Ak IS" ' / { VN~ [Var®ef + A @kﬂ@k]} ds(€).

(2) Assume T =1, then we have

lig A0 = A IS {_
M

e—0 €4 q

VB~ [Varal + O+ 00)83 — T[] | )

(8) Assume —1 < 7 < 1, then we have

lim AR = A _ 0|87 1|/ D (€)%ds(¢

e—0 eqt7—1
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(4) Assume T = —1, then we have

R _
lim Ak (6) Ak
e—0 €q1—2

_ 0(q—2) q—1 2
= 205 [ aueraste)

(5) Assume T < —1, then we have

lim)\() /\k: S 1|/ Py (€)%ds(¢

e—0 €q4—2

Here |S97Y = 27%/2/T(q/2), which is is the measure of SI~1 and T'(s) = [;°t*~te~tdt is
the standard Gamma function.

Theorem 2. Assume that n —m = q =2 and A\ is simple in (1.1).
(0) We have

- AY(e) — Ak _ 2 2 2

lim == =7 [ (=2[VNPi|* — [Vu®|® + N @] — L H[Dy]) ds(§).
e—0 € M

(1) Assume T > 1, then we have

lim 7)\’?(6) — M

e—0 62

= 7T/ (—2|VN®> — [Var®i|® + M@} — @ H[Dy]) ds(€).
M

(2) Assume T =1, then we have

RGP
IE)% % = 71'/ (72|VN(I)]€|2 — |VM<I>k\2 + ()\k + 20)@% — CI)kH[(I)k]) ds(ﬁ).
€ M

(8) Assume —1 < 7 < 1, then we have

. )\kR(E) — )\k
T

(4) Assume T £ —1, then we have

lim (AR (e) — M) log(1/€) = 2m / . (£)2ds(€).

e—0 M
Remark 2. It should be noted that in the case 7 < —1 in Theorem 1 and Theorem 2, the
formula takes the same form as AP (€) (the case of the Dirichlet B.C. on T'(M,€)). In this
case the Robin B.C. is close to the Dirichlet B.C. On the other hand, the formula for A2 (e)
for 7> 1 (in (1)) takes the same form as A (¢) (in (0)).

_ 2 S .
Aﬂmkmwd@

Remark 3. For the case that M is a point, the hole is a ball or a small set around the
point, there are many results. For the case of Dirichlet B.C., we refer to Swanson [36], [37],
Rauch-Taylor [33], Ozawa [25],]26],[28], Flucher [12], Maz’ya-Nazarov-Plamenevskij [23].
For the case of Robin B.C and a spherical hole, more closely related results are Ozawa
[27],[29],[30], Roppongi [34], Ozawa-Roppongi [30]. Actually Theorem 1, Theorem 2 for M =
a point (m = 0) and n = 2,3 agree to their results. More recently, quite elaborate (higher
order) e—expansion of the eigenvalue for the Neumann B.C. case are studies by Maz’ya-
Nazarov-Plamenevskij [23], Lanza de Cristoforis [21], Ammari-Kang-Lim-Zribi [1]. It seems
difficult to generalize the main results to higher order expansion only by the mathods in this
paper and so it remains as an future subject. For a similar problem about the Lamé operator
concerning in a domain with a small spherical hole, see Maz’ya-Nazarov-Plamenevskij [23].
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Remark 4. For the case n = 3, dim M = 1, Theorem 2-(3) agrees to Theorem 1 in Ozawa
[31]. His method relies on approximate Green function. So our main results can be regarded
a generalization of works due to Ozawa, Roppongi and others, to general M by an improved
and direct method.

We briefly mention some other related works. There have been many works on the
eigenvalues of the Laplacian in relation with the domain perturbation problems. Among
them, some are motivated by phisical phenomena and others are from the problems of
geometric analysis, etc (cf. Courant-Hilbert [7], Grebenkov-Nguyen [15] with its references
therein). For the regular domain pertubation, J. Hadamard deduced the famous variational
formula for the eigenvalue which is a pioneering work in the research field of PDEs on
perturbed domains (see also Hadamard [16] for the pertubation formula of Green function).
Later his formulas were rigorously justified from PDE theory point of view and extended in
several directions.

There have been also many works for the eigenvalue problems of singularly perturbed
domains. Roughly speaking, there are two typical cases of singular perturbation of domains.
The first case is the domain with holes or cavities like ones in this paper. The second
case is a domain with a thin handle like a Dumbbell shaped domain (or thin domains)
(cf. Jimbo-Kosugi [17] with its references and also Kozlov-Maz’ya-Movchan [20]). For such
singular domain perturbation, if we try to look into the detailed behaviors of eigenvalues
and eigenfunctions, there appear difficulties due to that the perturbed domain Q(e) can
not be parametrized by a diffeomorphism from {2 smoothly up to the limit ¢ — 0 and we
find that the situations seriously depend on each individual situation and the eigenfunctions
may behave singularly near a new boundary which arise due to singular perturbation of
domains. The interesting point in this subject is that a lot of mathematical techniques and
methods are involved to overcome the problems and see the solutions of PDE in a singularly
perturbed domain. In this paper we construct a good approxomate eigenfunction (cf. @y .
in the section 4 and the section 5) by using some special functions which have sharp layers
near M. See also Maz’ya-Nazarov-Plamenevskij [23] for several techniques to have good
modification of solution of PDE under several kinds of singular perturbation of domains.

2. PRELIMINARIES

In this section we prepare several notations and facts for the proofs of the main results.
[Coordinate system in B(M,rq),['(M,ry) and the metric tensor]

For calculation and estimation of auxiliary functions, approximate eigenfunctions, we
prepare a coordinate system in a neighborhood of M. Since M is a compact m—dimensional
manifold, it has a union of a finite number of patches {M,}, and each M, has a local
coordinate (£1,8a,- -+ ,&m) and the metric tensor of M is expressed as {g,;(£)}; in terms of
this coordinate. From the regularity of M, for a point  in a tubular neighborhood B(M, ry),
there exists a unique £ € M such that f_a>: is normal to M provided that ry > 0 is taken
adequately small. For any £ € M, the vector space R™ has the orthogonal decompoposition
into the tangent space T: M and the normal space N:M .i.e.

R" = Te M & Ne M.



142 SHUICHI JIMBO

Note that dim(Te M) =m, dim(NeM) =gq.

Let (e1(§),e2(§),-- - ,€eq(€)) be an orthonormal frame in Ne M. We can choose this frame
which depends smoothly on £ in each local patch M,. Using this frame, we can express x
uniquely in a neighborhood of M as

q
(2.1) r=E+> meeds).
(=1
Denote the second term by 7-e(§) and note that this second term and also |n-e(§)| = |n|
do not depend on the choice of the coordinate system (&1, -+ ,&,,) and the frame {e,(€)}7_ ;.
Using the coordinate (£1,&s, -+, &) for € € M, we can introduce the coordinate

(615527“' a&mv”laﬁ?v"' 7”(])

in the tubular neighborhood B(M,rg) provided that ro > 0 is taken adequately small (cf.
Gray [14]). Actually this is justified by the implicit function theorem. We can also assume

that B(M,rg) C Q. Under these conditions, I'(M,ry) = OB(M,ry) becomes a smooth
manifold of n — 1 dimension, which is the set expressed by the condition || = r¢ in the
above local coordinate. We can take the (symmetric) metric tensor as (g:,;(£,7))1<; ;< in
terms of this coodinate at this point z = £ + n - e(£). For the indicies m +1 < i < n or
m+ 1= 5 < n, we are regarading as &,,+¢ = ¢ (1 £ ¢ < ¢). Putting

g(&m) = det(gi; (§,m)1<ij<ns,  9(§) = det(g;;(€))1<i j<m

The volume element dz in R™ and the volume element ds(£) in M are expressed as
da = /g(&,n) &y~ démdn g, ds(€) = V/G(E) dEx -+ dém,
respectively. We see that
9i3(&,m) = 0(i,j) for m+1=ij<n,
9i(&n) =7;;(6) + O(nl) for &€ M,[n|=rg 1=4d,5=m,

9(&n) =7(&) + O(Inl) (£ € M, [n] = o).
From these properties, we can express the measure dz in B(M,rg) and the surface measure

dS on I'(M,r) in terms of the local coordinate as

dz = p1(&,m)dnds(€)  p1(€,n) = (9(&,1)/g(€))"/?

dS = pa(&,m)ds, ds(€)

where ds,, is the ¢ — 1 dimensional measure in the sphere |n| = 7 in R?. p;(&,n) and p2(&,n)
are positive smooth functions. It should be noted that

p1(&:m) = 1+ O(|nl), p2(&;m) = 1+ O(|n])
in smooth sense for small |7|.
Let (g%(£,n)):; be the inverse matrix of (g;;(£,7))i; and let (g% (€))i; be the inverse

matrix of (g;;(£))i;. Then ¢% and g% have the similar relation for 1 < 4,5 < m.

From the definition of this coordinate system (&1, -+ ,&m, M, ,7q), we have the follow-
ing properties of g;;(&,n) near M.
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Lemma 1. We have

(22) gi, m+l(§ n)\M = Im+e, 1(5 n)\M =0 ( g g m, 1 g 14 g Q)7

agi,m—i—ﬂ (fa 77)

(23) 80 o i B(M) (ZiZm1Se0)
0

(2.0 (2mtle) o (gisamirsisnisiso)
¥ |M

Proof. We use (2.1). For a point x = £+n-e(§) = &+ 3771 np ep(€) in T'(M, 7). We denote
the inner product of vectors in R™ by (-,-). If 1 £ i < m,

Ox Gx I Bey( I 0
smsa(6n) = g ) = (3 + 3o IR SNEE S
p=1 !

The right hand side vanishes if n = 0 and this leads to (2.2). It follows that

9gim+e/0ne = ((Der(§)/98:), ea(£)) = 0

These calculation concludes (2.3) for the case 1 < ¢ £ m. On the other hand if m+1 < i < n,
it holds that g; m4¢(§,m) = d(¢,m + £) and (2.3) is also true. The (2.3) is proved for all the
case of 1 £ i < n. (24) is true if m+ 1 < i, j < n. Because g;; = d(4, j) in this case. For
thecase 1< i<m,m+1<5<n,1=</¢<q, we have

99,6, <~ 0 & €)
ég@ Zl Paé-g 55 7€€(§>>

This term vanishes for n = 0. (2.4) is concluded.

We also have the following properties for the inverse matrix {g*/} near M.

Lemma 2. We have

(2.6) g7 EMMm =" EMm =0 1Zi<mm+1=j=n),
(27) (W) —0 (1S<q1<i<n),
8772 |M

iJ
(2.8) Cw(§m> —0 (1<i<nm+1<j<n1<l<m).
agf |M
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Proof. All these properties (2.5), (2.6), (2.7), (2.8) follows from Lemma 1 which are con-
cerned with {g;;} and the formula for the derivative of the inverse matrix

8754(9 J)1§i,j§n =—(g j)1§i,j§n (875)1&,]&1 (g ])1§i,j§n'

[Mean curvature operator on M|
The second fundamental form h¢(X,Y) of M is defined by the following formula
VyX = V¥ X +he(X,Y) € TeM @ NeM  (orthogonal decomposition)

for any C! vector field on X,Y in a neighborhood of M at each ¢ € M. Here Vy X is the
covariant derivative of X with respect to Y in R™. The mean curvature vector H of M is

defined by
He =Y he(Ei, Ey)
i=1

for each £ € M. Here {E1, Es,---,E,,} is an orthonormal frame of T¢ M. Note that He
does not depend on choice of this frame (cf. Kobayasi-Nomizu [19]).

Lemma 3. In this coordinate system (£,n), the mean curvature operator of M is expressed
as follows.

1 ovg(&:m) 9 9”7 (£,0) dgi; 0
o0 mi=y e (M) B B, T e

=1 1< em one ong

in this coordinate system ({1, ,&m, M, ,Nq) and it is expressed as a normal vector field

(2.10) Z L <3Vg(£,77)> ee(8).

V9(€,0) One
[Laplacian in terms of (&1, ,&m, M1, ,74)]

In this (local) coordinate system in I'(M, 7o) and the metric tensor (¢;;(§,7))ij, we can
express the Laplacian A in terms of (&1, ,&m, M, -+ ,7q) in the following form
(2.11) Au = Jy(u) + Ja(u) + J3(u) + J4(u)
where

() = - Y e (Vg oL
\ / 653
1<z ]<m
1 0 . ou
Jo(u) = ——— o < g(ém)g“’”“(&n)>
Va&n o, <§<e<q 0 one

Jg(u)

0 ( .y ou
—— — (Va(& g™t (& n) 5 )
\/7 1<]<;<e<q e o(&me ! 9;

DY 0 I B
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Ja(u) = \/— X 3 ( (& mgmtimta(g,m) g:s > :

15¢,55¢q

Proposition 3. For a C? function u which is defined in B(M, o), we have

=1 ony In=0

Proof. We evaluate each term of the right hand side of (2.11) at n = 0. J; corresponds to
the first term of (2.12). J» and J3 vanish for 7 = 0 due to Lemma 2. From Lemma 3, Jy
corresponds to the second and the third term of (2.12).

([l

[Barrier function)]

We prepare some functions to construct a barrier function to constrol the behavior of solu-
tions around M. We consider the following ODE,

2
% (qu —ml)%—kmgK:O (r>0)

Here my > 0,mq > 0 are constants. By applying the standard Frobenius method, we can
construct a formal power series solution of the ODE (2.13) and we can discuss its convergence
by the aid of the method of a majorant series. Consequently we get solutions K; = K1 (r)
and Ky = K5(r) which are convergent for all » > 0 and linearly independent. We summarize
the results in the following proposition.

(2.13)

Proposition 4. The equation (2.13) has two (linearly independent) solutions Ki(r), Ka(r)
of the following form,

r)= Z agr®  (regular solution),

(2.14)

(o) o)
Ky(r) =r 112 (Z by re> + <Z o 7‘£> logr  (singular solution),
£=0 £=0
and all the power series in (2.14) are convergent for r > 0. We note
ap #0 for q=2,
bo#0 if ¢=23 and co#0 if ¢=2.

Multiplying adequate constants to normalize the coefficient of the leading terms, we have the
properties for some r1 € (0,3¢] N (0,7]

Ky is reqular atr =0 and K1(0)=1, K;(0)=0 (¢=2),
lim K(r)/r* =1 (¢ 23),

lim Ko (r)/Log(1/r) = 1 (a=2)

(2.15)
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(2.16) {Kl(” >0, Ki(r) <0, K{'(r) <0 (0<r<r),

KQ(T)>O, Ké(’l")<0 (0<T‘§T1).

See Coddington-Levinson [6], Whittaker-Watson [38]. This is equivalent to the condition
ap=1and bg =1if ¢ =2 3, ¢g = 1 if ¢ = 2. By a direct calculation we see az = —ms/(2q).
Later we need only K;. The equation (2.3) is related with the Whittaker equation through
a certain change of the variables.

Definition 3. We define a barrier function . (z) as follows.
Ye(x) =2K1(|n]) for x=E¢+n-e(§) € B(M,ro)

Recall - e(§) is defined in (2.1). Note that ¢ (z) is well-defined (¢.(z) does not depend
on the choice of coordinate system). Remark that 1. depends on two parameters m; >
0, mg > 0.

Lemma 4. The barrier function v.(x) (defined from K1) satisfies the following properties.
For any mg > 0, there exist my > 0, r1 € (0,70] and €1 > 0 such that
(2.17) A +morpe S0 in B(M,r)\ B(M,e),

wE
He >
_— 0
for any € € (0,¢€1).

(2.18) on T(M,e), 1= (x)<3 in B(M,r1)\ B(M,e),

Proof. We use the local coordinate system (&1, ,&m, M1, - ,7q) constructed previously in
this section. We have 09.(£,1)/9¢ = 0 (1 £ i £ m) because ¢.(&,n) depends on |n|, but
it does not depend on &1,&s, -+ ,&n. We use the expression of the decomposition of A in
(2.10). J1(ve) =0, J3(we) = 0 are clear. So we have

(2'19) Aws + Mot = J2(7/}e) + J4('L/}e) + mat)..

We look into the sign of the right hand side of (2.19). The terms Ja (¢, ), J4(¢.) are calculated
as follows.

9 i 3%
So(vhe) = ———= a2 < g(&,m)g (&) )
i \/7 10 <;<@< 3 onge
0t g 0/alEn), D
= +
1SiSmZ,1SZSq( 0% g(&n)  9& 37%
0P
J. (’(/JE) = ( g 77) m~+£, m+9(€’ ) )
! \/7 1<[z:<q ans

O*pe | gmrEmrE(E m) D4/ g(E, ) O
_ m+£,m—+s
Y (4 (&n)ansanEJr ) o 8775)

154,5%¢q
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m+£,m-+s

1=4,5%q One Ons

q 821/}
=Y o Y (g E ) - 6L, 9))
1=5¢,55¢q

dgmrhmEs(g ) g€ n) 9/ g(€m) | e
+ p) + B B
1<0a<q e g(&m) me Ms

e
8778 8776

From

0. / e 0? e < ( 5) Nens 7 Nens >
=2K) — + K )
ane ~ KR Gy, =2 S =)+ KD

we have

agi,m—M gz’,m+£ o /g(& ,,7) , Ne
J ) = K T

Ja(e) + matpe = 2{ K7 (In]) + Inl K1(|n|)+mzK1(\?7l)}

6(f,s) Mells y gt (ll) 10y

42 (g (e ) — 8(6 ) (K (1m)( w P e
15¢,55q n n n
dgmrtmis(g,m) gmrhmie (g ) 3\/T (I e
D e St
1<0,5<q e g(&n) ne n
Therefore
T () + Ja(e) + matpe = 2K (|nl) x (my + I+ Lo + Iy + 1)
where ”(| |)
K1 (|n]) nens
I = gm+f,m+s 5’77 _5 E,S 1
P S AR
Ly ) = 6s) K (r) non
15¢,55q |n| Ki(|77|) |77|2

dghmtt  ghm Tl 9y /g(&,m), me
I, — e
2 Z N L

S

5(€7 5) _ 77['75)

I3 = Z (gm-&-é,m+s<£7n) _ 5(& S))( |77| ‘77|3
1<¢4,5<q
m+£,m-+s —5(¢ .
1=¢,5%q
AgmrimEs(gm)  g" et (En) 0y g(§,m) | me
I, = e
=2 T o

154,5%q
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It is easy to see that Iy and I are bounded in B(M,rg). From Lemma 2 there exists ¢ > 0
such that
g™t (€)= (L s) S el (0<|nl Sro, 1S Ls < q).
We also note that » K{'(r)/K{(r) is bounded in 0 < r < ry from (2.15)-(2.16), we see that
I, and I3 are bounded and
Jo(Ve) + Ja(the) + mathe = 2m1 K ([n]) + ¢|Ki(In])]-

Since K1 (r) < 0in (0,71), the right hand side of this expression is negative if m; is taken
adequately large (depending on M, not on €). We have discussed in one local neighborhood.
Since M is compact and it is covered by a finite number of such neighorhoods. We can take
the maximum of m; and the minimum of r; > 0 after discussion of each neighborhood.

O

3. ESTIMATES FOR THE EIGENVALUES AND THE EIGENFUNCTIONS

The upper estimate of the behavior of is carried out in the variational formulation of the
eigenvalue problem with the aid of the functional (Rayleigh quotient)

R.(®) = / |V<I>|2dx+ae'r/ 2dS | /19172 )
Q(e) ['(M,e)

for ® € H'(Q(e)) such that ®(z)=0 on T.
A (e) is characterized by the following formula.

Max-Min principle (Courant-Hilbert [7])

M (e) = sup inf{R.(®) | ® € H'(Qe)), ®jr =0,® L Ein L*(Q(e))}
ECL2(Q(e)),dimE<k—1

Here E is a linear subspace of L?(Q(e)).
Remark 5. For the max-min principle for A} (€), we just put o = 0 in R(®). For A\ (e),

we impose the Dirichlet boundary condition T'(M, €) for the test function ® (so the second
term in R.(®) vanishes).

By the aid of the above max-min principle, we can prove the upper estimate for )\kR(e),
AY (e).

Lemma 5.

(3.1) limsup A\f(€) £ \g, limsup AN (¢) £ N\ (k€ N).

e—0 e—0

Proof. To construct a test function, we use the following cut-off function

) lox(lnl/o

= f eR% e < |n| <.
Tog (0 /<) or 7 e< |nl S ro
A simple calculation gives

—1|2dn = 1 2 _ O(@) (
ool 1P =0y [ Sapto) dn—{O(aogle)z) (

<
I
DO

<
v
w
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for 0 < € < rg. We put

5 (x):{q)k(z) for x€Q\ B(M,r)
- pe(m)®i(z) for w=¢+n-e(€) € B(M,r)\ B(M,e)

and we see that 5,“ € H'(Q(e)) and gk,e vanishes on I'. A simple calculation shows that

(Qgp,ea (EE,E)LZ(Q(e)) = 5(]91 é) + Hl(pa ev 6)7 (Vap,ev V(EZ,E)LZ(Q(e)) = Apé(pv 6) + ’{(pa ev 6)-
where )

le) =0(——F%

) e o) = Ol

With the aid of this function, we begin to estimate the eigenvalue Ay (e).

Ee = L~H~[$1,ev 52,67 e 75’6,6}
then dimEE = k for small € > 0 since
(gp,ea gﬁ,e)Lr"(Q(e)) = 5(p7 E) + O(| loge‘il)

for p,# = 1. Take any linear subspace E of L?(Q(¢)) such that dimE < k — 1. Using the
dimension theorem (in Linear Algebra), there exists non-zero function

K//(pa €7 E) = O( ) fOI' 1 é p7£ é k

|log €]

k
QD('T) = Zcf gl,e(x) S Ee
(=1

such that ¢ | E in L?(Q(e)

). Using this property of ¢ we have the estimate.
inf{R(®) | ® € H'(Q(e)), ®;r =0, L Ein L*(Qe))}

< Ru(p) = / Vel2dz + oc" / 2248 | /el 000
Q(e) T(M,e)

We can assume without loss of genrality Z]Z:I lck|? = 1 due to the homogeniety property
(i.e. Rc(td) = Re(9) (t > 0)). Note
(V@ , VO, ) 12(0) = Ay 0(l1, la),  (Pry, Pry)r2()) = 0(41,L2)

and we have

k k
/ VolPdz = ) / co,c, VO, VOpdr = Y (A, 6(0, L) + k(L o, €))e, e,
Q(e) by tp=1"71€) 0 fa=1
k k k k
= Z ecs + Z K(l1, la, €)co, cop S Ag Zc? + Z K(l1, L2, €)ce, co,
=1 t,6o=1 =1 =1
k k
/ “p|2d‘7’. = Z / CZ1c€2q)€1q)fzdx = Z (6(£17€2) + "i/(€17£27 6))Cf1052

Q(e) 01,65=1 Q(e) l1,42=1

k k
:Zc?—i— Z K (1, la,€)co, cp,
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: k
Since >~,_, ¢ =1 and ¢ = 0 on I'(M, €), we have

k
e+ 220, rp=1 [E(L1, L2, €)]|
1- Zfl,zez:l |/ (€1, L2, €)]

The right hand side the above expression does not depend on the choice of E with dimFE <
k — 1 and hence we have

Re(p) =

k
)\k + 221,22:1 ‘K/(gl’fz’ E)l
k
L= >0 0y [K/ (01, a5 €))
This inequality gives an upper estimate for )\,f“(e) for small € > 0.
On the other hand, from the comparison principle of eigenvalues for the Robin B.C. and

Neumann B.C on T, we have A\l (€) < AE(e) (cf. Courant-Hilbert [7]) and obtain the same
upper estimate for AY (e).

(3.2) Mi(e) < = A+ O([log e 717?).

O

Remark 6. The above argument is common in all cases of boundary conditions (Robin,
Neumann, Dirichlet B.C) and so it is not a sharp estimate.

We prepare some auxiliary results for the estimates for the eigenfunctions, which will be
used later in the proofs of the main results.

Lemma 6. For each k € N and any r € (0,79), there exists c(k,r) > 0 such that

(3.3) sup |<I>,1€V€(x)\ < c(k, ), sup |<I>kR)€(x)| < ek, r),
2€Q\B(M,r) 2€Q\B(M,r)

for any r € (0,79) and € € (0,79/2].

Proof. This is proved by the cut-off and the interior and the boundary regularity estimates
(cf. Evans [11](section 6)) with ||‘I>£Y6||L2(Q(e)) =1 and H(I)QGHLQ(Q(e)) =1 (See also Jimbo-
Kosugi [17] (Section 8)).

O

We also mention some results for basic estimates for the eigenvalue A\ and its correspond-
ing eigenfunction @y for (1.1).

Proposition 5. There exist positive constants ¢, ¢}, ca, ¢, c3, ¢4 such that

(3.4) a k- <M Sk 4+, (keN)

(3.5) 1@kl () S e3 AF%, VPR o) S A ADTP (p,k € ).
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These properties are easily deduced from the famous works in the spectral theory of the
2nd order elliptic operators. The first inequality for A\ easily follows from the Weyl formula
of the distribution of the eigenvalues {A;}72, (cf. Courant-Hilbert [7], Edmunds-Evans [10]
). The second inequalities in (3.5) for @, are essentially due to the work by Li [22]. Repeated
application of the estimates of solutions of the Poisson equations (cf. Evans [11]), the higher
order estimates can be deduced.

Proof of Proposition 1 and Proposition 2

We first prove that there is a uniform bound for @ﬁe in Q(e). From Lemma 5-(3.1), there
exists €o(k) > 0 such that

(3.6) 0S A (@) S M +1 for 0<eZelk).

Put mo = A\ + 2 and apply Lemma 4 for this msy. Then we have mq > 0,71 > 0, ¢ > 0 and
a function ¢ (z) in B(M,r1) \ B(M,¢€) such that (2.17)-(2.18) hold. On the other hand we
have the estimate (3.3) in Lemma 6 for = 1. Combining these estimates, we have

(3.7)  —(c(k,r1) + Dpe(x) < Ppe(z) < (c(kyr1) + Dpe(z) (2 € T(M,71), 0 < € < €q).

Using the conditions for @ﬁe and ., we have

ADY + M\ ()P, =0 in B(M,r)\ B(M,e), 8§§5 +o"®F =0 on T(M,e)
A + motpe <0, 1S 0(x) £3 in B(M,r1) \ B(M,e), %dl)/e =0 on T'(M,e),
we can claim that
(3:8)  —(clkyr) + 1) ve(x) £ OF (2) £ (e(k,m1) + V)ipe(2) in - B(M, 1)\ B(M,¢)
for 0 < € < €;. Actually we first note that
(3.9) tef ()] < (clk,m1) + De(x) in B(M,r1)\ B(M,e)

holds if the positive parameter ¢ is small for each €. Then define
a, = sup{a € (0,00) | (3.9) holds for any ¢ € [0, ]}

which is positive. We note that «, may depend on e. If a = 1, the claim (3.8) holds
uniformly for 0 < € < €;. Assume the contrary, that is 0 < a, < 1. Put non-negative
functions

Ut () = (c(k, 1) + 1) (x) £ a*fbﬁe(a:) in B(M,r)\ B(M,e),
and then we have, from the definition of «, that the following (i) or (ii) holds.

(i) U (x) attains 0 in B(M,r1) \ B(M,e),

(ii) ¥~ (z) attains 0 in B(M,ry) \ B(M,e€).
A simple calculation gives

ATE L AR ()TE < —(my — AE(e))(c(k,r1) + 1)pe <0 in B(M,r1)\ B(M,e),

ot

5 + 00U 2 o€ (c(k,r) + 1)he 20 on T'(M,e), ¥F>0 on I(M,r).
We used the property of ¢ in Lemma 4 and (3.6). From the maximum principle or the Hopf
maximum principle (cf. Gilbarg-Trudinger [13], Protter-Weinberger [32]), both cases (i) and

(ii) are contradiction. Therefore the assumption 0 < a, < 1 is false. Thus we conclude
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oy 2 1 and we have established the estimate (3.8) for 0 < € < ¢;. Using the property of 1),
with Lemma 4, we conclude Proposition 2-(1.6). The completely same argument applies to
oY .

Next we deal with the convergence of @ﬁe. From the conditions

197 2@y =1 IVOE T2 +oe /F(M )(‘I)kR,e)zdS =AM S M+l (0<eZe),
{(I)k:R,s}0<6§7" are bounded in H'(Q\ B(M,r)) for any r € (0, ¢1]. We use the Rellich theorem
and the weak relative compactness of bounded sequence in a Hilbert space with the diagonal
argument. We can conclude the followings.

For any sequence of positive values {€;}s—1, there exist a subsequence {(s}52;, values
{172, and functions {®}.}%2, in 2\ M such that

Jim AE(G) =N, dim (|07 — D llra@\Bnn) =0 for >0,

lim ®fF  =®), weaklyin H'(Q\B(M,r)) for r>0,

§—00

(3.10) N, = liminf AR(¢,) > liminf/ VO [Pde
s7re0 Q\B(M,r) e

S§—00

> / |V & |2dx for r > 0,
Q\B(M,r)

(3.11) AP+ N @, =0inQ\ M, &, =0onT.
From (1.6),
= / (BF, )2d = 1 _/ (BF, 2dz = 1~ |B(M, 7)| e(k)?
Q\B(M,r) B(M,r)\B(M,e)

Put € = (s and take s — oo and get
12 [ (@) 2 1 BOL) ek
Q\B(M,r)

for any r > 0. Since codim(M) 2 2 and the measure of M is zero, we get [,(®})?dx = 1.
From a similar arguments gives (@, ®}. )r2(q) = d(k1, k) for ki, ke € N. From (1.6), each
@/ is bounded in Q\ M. So we apply the removable singularity argument to the equation
(3.11) (cf. Jimbo-Kosugi [17](Section 8)) and obtain that ® is smooth in Q. Taking r — 0
in (3.10), we have

/ VD, [2dz < A,
Q

On the other hand, in view of the orthonormal property of {®}}%2, and the Max-Min
principle characterization for Ay,

/ IV, |2dx > A,
Q

we obtain A}, = A for k € N. Eventually we get A\, = A, for £ € N, by Lemma 5. Since
the choice of {e;}32; (satisfying lims_, o, €5 = 0) is arbitrary, We obtain the conclusion of
Proposition 1 for Aff(e). A same argument also applies to Ay (€) and @5 . O
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4. PROOF OF THEOREM 1

In this section we deal with the case ¢ = 3 to prove Theorem 1. We first construct
an approximate eigenfunction %k,e, which is given by modifying ®; in B(M,r) \ B(M,e¢)
with taking account of the Robin boundary condition. For the approximation, we need a
correction term. We consider

Ay,p=0 for e<|n|<ry, ¢=0 for |n|=ro,

G (e rors) = (Gl n el) o e n-e(e)
Ovy, Il =e Ovy,
for each & € M. Here A, = 8%/0n} +--- 4 0*/0n?.

This is the Laplace equation in a g—dimensional spherical shell domain and it can be
solved by a kind of the Fourier series expansion method. We use the polar coordinate
n = rw in RY. Each of rfy,(w), 777920, ,(w) (¢ = 0,1 £ p < (¢)) is a harmonic
function in RY \ {0}. Here {¢s,} is a system of the spherical harmonic functions in S9!
and it is the complete system of the eigenfunctions of the Laplace-Beltrami operator in $¢~!
and in other words it is given through the following eigenvalue problem (cf. Shimakura [35]).

(4.2) App+~vp=0 in S9!

[nl=e

Actually it is known that the eigenvalue v(¢) with its multiplicity ¢(¢) are given as follows

(3) A0 =te+q-2), o= 5 @ %Zﬁ =

and the corresponding eigenfunctions {¢¢p}s>0,1<p<.(s) are obtained by restricting all the

) (£20,1=p=u())

harmonic polynomials to S971. Tt is easy to see that () is a polynomial of order q — 2.

All of these functions 7y ,(w), 7920 ,(w) (€ 2 0,1 < p < (¢)) form a complete
basis of harmonic functions in the spherical shell region € < |n| < rg. So the solution ¢(n)
of (4.1) is expressed by

s = D> (aprt +bepr™ T )W) (€< <rowe ST,
020,1<p<u(0)

The coefficients ag, bep can be calculated by the infinite series of relations determined by
the boundary condition. From the boundary condition on |n| = rg, we have

Z (GZ,pTo + bepTo oI )‘Pf,p(w) =0 (we Sq_l)
£20,15p=e(0)
which gives
aepr)+beprg’ =0 for £20,1=p=(0).
¢ is written by
)= D bpp(r TP g, (W) (e<r <7ro,wE STV
£20,15p=e(£)

We calculate the Robin condition on || = €. Noting

0
= = Zm'am on DI(M,e)={z=E,+n-e)|E€M,n =e
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we have the equations for the coefficients ay,p, by, as follows.

_ Z bé,p ((—é —q+ 2)T727q+1 _ 67“()_25_[14_27‘271) e @l,p(w)

020,1<p<u(0) B

—0—q+2 —20—q+2 ¢
Y beod (TR ) ()

r=e€
£20,15p=(0)

= =) (VB(E+ (ew) - e(€)), €s(€))ms/|n] + o€ Dr(& + (ew) - €(€))

i=1
for w € S771. Multiply both sides by ¢, , and integrate on S9! and we get

bg’p {(g—i—q — ) —L—q+1 +£ —20—q+2 E 1 _’_0(67€7Q+2+T _ T62€7q+2€g+7—)}

= /Sqil {_ Z{(V‘bk(f + (ew) - e(€)),ei(&))wi} + o€ P (€ + (ew) - e(f))} @op(w)dw

We used w; = 1;/|n|. From these equations we get ay p, s, as follows

—20—q+2
Aep = Ty be,p

1

4.4 bep =
(4.4) P (C+q— 2)64*4“ + Ero—zéfqﬁeefl + O—(E*f*q+2+r _ 7“072#‘”26“7)

x /Sqil {_ Z{<V¢k(§ + (ew) - e(§)), €i(§))wi} + o™ @p(§ + (ew) - e(f))} o p(w)dw

We remark that these (e—dependent) coefficients ay ,, be,;, are smoothly dependent on £ € M
since @y, is smooth. So we denote this function ¢(x) in B(M,ro) \ B(M,€) by Gi.(z). That
is

Gre(@) = Y bep(r T2 =T 20, (W) (@ =&+ (rw) - e(§)).

020,1<pZu(0)

Definition 4. The approximate eigenfunction is defined by
By (1) = Dy (x) for xe€Q\ B(M,rg),
he Oy (z) — Go(2) for @=¢E+1-e(€) € B(M,ro)\ B(M,e).

For later use, we need to look into the detailed behavior of the correction term Gj, .
Decompose G, into two parts.

(4.5) Gl(ﬂl,i(x) = boyl(riq+2 0 QDQ 1(w) + Z by p(r matl qT)ﬁpl,p(w),

(4.6) GA@)= Y bepr T 20, (W),
022, 1SpS(0)

Note that ¢(0) = 1,(1) = ¢ with
(4.7) po.1(w) =1/1STHV2 o1 (W) = (2187 P)w, (1S p=S0).
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It is also known that there exists constant c4(s) > 0 such that
(4.8) IVEpeplioe(saty S cay(O@D2H (20,1 <p<u(f),s 20).
See Li [22] for the proof (cf. Jimbo-Morita [18](Appendix)).

For the perturbation of the eigenvalue, the first several terms are most important and we
need to evaluate and estimate these terms. In the calculation below we use

[ wdo=0. [ wwde=5GalsT e (1S <a)
Sa— Saq—1

The case ¢ = 0:

(4.9 / { > ((V@k(E + () <f>>,ei<s>>wi}¢o,1<w>}dw
sav A
- —Z Y AROLACRICIE +j21 (T2 (e €). ex(E)ye + O} gz e
a—111/2 4
= S (A u(€)ea(@) i@ e+ O
@10) o [ el () (o @) = oIS AL(E) + O()
The case £ =1
(1.11) /. {— S (VO + () €(€), ei<«s>>wi}so1,p<w>} o
1/2
- |Sf T Z /S {(V®1(€), es(€))wiwp + O(€) Ydw
1<i,p ot
‘Sq71|1/2

— gz (Vo) &p(€) +0(e)

(4.12) 067—/ D (€ + (ew) - e(f))@l,p(w)dw
Sa—1
T q1/2 q o 5 , ]
= 0€ |Sq_1|1/2/5ql(q)k(£) + ;(V k(ﬁ),ei(§)>wie—|— (e ))Wp w
e+ 8T

a7z (V) ep(€)) +0(0))
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Lemma 7. (i) (=0

q@e‘; (XL 1fei(©) V2P (£)ei(€)) + O(e)} (r>1)
{(=1/0) Sy (€i(6), V2r(€)es(€)) + 0®r(€) + O(e)} (1 =1)
b1 = |11/ “;_”% k(&) +0(e)) (-1<7<1)
29 (®k(8) + O(e) (r=-1)
€12(@4(€) + O(e)) (r<-1)
(ii) £ =1
|§a—1[1/2 -1/(¢—1) (r>-1)
by = =i (VoK ()14 0(0) x § (0 =1)/(a = 1+0)  (7=-1)
1 (r<-1)

Remark 7. Since ®;, is smooth, the estimates in by 1, b1, are uniform in £ € M. Moreover
we easily see that

O(en) (r2 1),
Veboa| = { O 1) (<7 <1),, [Vibiyl=0(c) (—00 <7 <o0).
o2 (r<-1),

Notation. In the above lemma, we used the notation
q

(e(€), V2Ox()e(€)) = 3 _(ei(), VZ@r(€)ei(€)).
(Proof of Lemma 7) (i)
b 1 y |Sq—1|1/2
ot (q — 2)e=a+! 4 g(e—a+2+7 — p 912eT) q

q
x (— S (V2B ()e(€), e(€)) € + O(2) + qoe (D4(€) + 0<e>>>
i=1
From this expression, the asymptotics of by 1 in (i) follows depending on the ranges 7 > 1,
T=1-1l<7<l,7=—-1,7< —1.
(ii)
1 |Sq71|1/2

— — X

(q—1)e 1 +ry?+o(e-atltm —p9em+l) q'/?

X (=(V@1(§), ¢p(€)) + O(e) + o€ ((VOL(E), (&) + O(e)))

From this expression, the asymptotics of b1 , in (ii) follows depending on the ranges 7 > —1,
T=-1,17<-1

bl,p =

Lemma 8. For any N € N, there exists dy > 0 (independent of £ € M ) such that

elta (r=20)

ehtatr (-1<7<0), (I=p=ul),L=2).

(4.13) [bep| =
’Y(E)N elta—1
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We also have the following estimates.
Remark 8. For any N, s € N, there exists dy s such that
elta (r=0)

d
= (JZ)’;, ehtatr (-1<7<0).
K etta-1 (r£-1)

‘ng&p

(Proof of Lemma 8) Substituting ¢, = (—Ay,)Y¢e,/v(0)Y into the right hand side of (4.4)
1 o 1
(04 q — 2)et=at1l 4 pry 27T 2el=1 4 g(e—tmat24r _ p 2000 2chry Ay (0N

bZ,p = XI(‘&p)

where
I(t,p) = /S {— S VB + (ew) - e(€)), ea(€))wi} + o€ B (€ + (ew) - e(f))} EINBLE Y

i=1

which is calculated through partial integration

I(¢,p) = /Sq_l Pep (—00)Y { D AVELE + (ew) - e(€)), e(€))wi} + 0€™ By(€ + (ew) - 6(5))} dw.

Note that w; is the constant multiple of the eigenfunction ¢4 ;(w) and so fsq,l Yo p(w)w; dw =
0for £22,1=<p< (f). We use the Taylor expansion at € = 0 and see that the integration
of the zero-th order term vanishes in I(¢,p). So we get

/s«—l pep(w)(=Aw)Y {— Z{(V@k(f + (ew) - 6(5)),€i(§))wi}} dw = O(e),

/sqq Pep(W)(=80) Y {oeTp(E + (ew) - e(€))} dw = O(e™ ).

Using these estimates in the right hand side of by, we get the conclusion of Lemma 8. [

With the estimates in Lemma 8 and v(¢) = ¢({ + g — 2) (since ¢ = 3), with (4.8), G,(fz (x)
is uniformly convergent in B(M,rg) \ B(M,€) for each e > 0. This property is also true for
vrGP (z) for any p € N.

Remark 9. We note that the estimates in Lemma 7, Lemma 8 are uniform in £ € M.

[Calculation for the detailed asymptotic behavior for \(e)]

Here in this proof, we denote A\ (e), <I>,CR7E by Ak (€), @ e for simplicity of notation.
First we apply Proposition 2. Take any positive sequence {e,}72; with ¢, — 0 (for p — o0).
There exist a subsequence {(;}32; {€,}72; and an orthonormal system of eigenfunctions
{®).}72, of (1.1) corresponding to {A,}72, with (1.7)-(1.8). From now we take any k € N
and fix it and assume that Ay is simple eigenvalue of (1.1) (as in the assumption of Theorem
1). So we should note that

Q) () = Pp(z) or D) (z) = —Dk(x).
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Now we begin the calculation of Ag(€) with the equation (1.3), we have
/ BB AR =0 (0 € H(O(0)

which leads to

Dy e
/ 0, q)de/ V®k7evq)dx+/\k(e)/ O, D dr = 0.
151913} Q(e) Q

v (e)

Then by putting ® = &)k,e and multiplying —1, we have

oe” / D, Dy dS + V), VO o dz — A (e) / &, D dz =0
0Q(e)

Q(e) Q(e)

aeT/ O, B dS + / V&,V da
I'(M,e) B(M,ro)\B(M,e)

+/ V‘I’k7evzlv)k,5 dr — /\k(e) / (I)k,e&;k-,e dr =20
Q(e)\B(M,rg) Q(e)

~ 3, ~
o / Oy, By dS + / @k,ea heds — / B, ADy, . da
I'(M,e) I'(M,e)UL(M,ro) o B(M,ro)\B(M,e)
OBy, ~ N
+/ (I)Ic,e B k, dsS — q)k,eA(I)k,e dr — )\k(e)/ @k,eq%’g dr =0
D(M,ro) V2 Q(e)\B(M,ro) Q(e)

In the above, we denoted the unit outward normal vector on 9(B(M,rq) \ B(M,¢€)) by v;.
Thus we obtain the following basic relation about Ag(e) — Ag.

(414) ()\k(e) - /\k) / ‘I)k(z)q)k,e(a:)dx = 11(6) + 12(6) + 13(6) + 14(6)7
Q(e)
where
_ O0Gy; e o) — B (x
(1.15 BO== [ T (Ohle) ~ % @)as,
(4.16) Ir(e) = / Gr.e(@)(ADL () + Ak (€) P e (2))d,
B(M,ro)\B(M,e)
(4.17) Iy(e) = / (AGk.(2))(@p. () — B (x))da,
B(M,ro)\B(M,e)
B 0Gr.e -, B 0P,
(418) 14(6) = A(A{76) < 81/1 (I)k Gk,e 81/1 ) dS

From the boundary condition
(0Gr.e/0v1) + 0€ Gy e = (0D /O11) + 0" D, on T'(M,e),

I,(e) is also written as

/
(4.19) Li(e) = / ((M)’“ + 0" Dy )Py, — Gk,e(a(bk + aeTq>;)) ds.
r(Me \ O O
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In the left hand side of (4.14), we note from (1.6), (1.8),

lim Dy (2) P ¢, (x)da = / Py (2) P} (z)dz # 0.
e Ja) Q

From now we estimate and evaluate the behaviors of the terms I (€), I2(¢€), I3(€), I4(€) of the
right hand side of (4.14) for € = {5 (s — 00). For those purposes we carry out discussions
through several lemmas.

Lemma 9. There exists ¢, > 0 (independet of € € M ) such that

€ (r=20)
(4.20) GO (@) Sexx {2 (-1<7<0) (zel(M,e)
€ (r<-1)
(2) € (r=0)
(4.21) \67’“@ Sepx{etl  (m1<7<0) (zel(M,e)
! 1 <1
( )
@) et? (120)
(4.22) \T’“(x)\ Sepxert™2 (C1<7<0) (zeT(M,r))
= eatl (r <-1)

Proof of Lemma 9) Proof for (4.20): To see the behavior of G\*(z) for « € T M,e), we
k,e
substitute » = € and we have

GA@) = D buple TR 2T e gy ().
£22,1=5p<u(€)

. e —20—q+2 -
Since 0 < e~ 0t2 _ 2702l < —l-a+2 (hecause 0 < € < 1), we have

2 —f— - —
GA@IS Y el T P lorp@) S Y beple T Peny(g) D2

£22,15p=e(0) £22,15p=(0)
J etta (r20)
< Zc;;’y(f)(qfl)/zL(E)%efﬁﬂﬂr2 eftat (-1<7<0),
2 " et (rs 1)
€2 (120)
<Y ed 40, 247 1 0 eT(M
<D o N T2 € (-l1<7<0) (= ,€)).
(22 € (r<-1)

We used Lemma 8-(4.13). Fix N adequately large so that 3,5, ¢(£)/y(0)N~(07D/2 < .
This estimate gives (4.20).
Proof for (4.21): For « € T'(M,€), we calculate 8G§jz/8yl by putting r = e.

OGy.c —e— —2mat2 -
D@l == 3 bl =g e T g TR i w)

£22, 15pZu(0)
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<D (bl g —2)e T g 2R gy (w)]
022, 1Sp<u(0)

elta (r=20)

d
ELLE e (-1<7<0),

< 3 e (O (g ) T g ) R
022 etta—1

2

0 € (r20)

L

< 2 eady (Ut a =2+l AT e T (LT <0),
£22 1 (r£-1)

Since 0 < € < 19, if we fix N adequately large so that

_ 20—q+2, 04— t(£)
;((é—l—q 2) + lrg ra )7’%@]\,_@_1)/2 < 00,
this estimate gives (4.21).

Proof for (4.22): For x € I'(M,rg), we calculate 8G§jg/8u1 by putting r = rg.

8G1(3) —l—q+1 20— q+2
=2, —@) =] D bep(—f—q+2rg T = T gy (w)]
! 022, 15pSu(t)
<Y el @4 g -2 T e (w)]
£22, 15pZu(f)
o etta (r=0)
—L—q+1 L ¥ T
<ZdNC4 2€+q—2) q W (E+q+ (*1<7‘<0)
>2 elta-1 (r£-1)
ar (r20)
_g—1 (204 g —2)(0) . =
—Zd}\l&; 6/?”06 20q W edtT+2 (—1<T<0).
022 eat! (r<-1)
Since 0 < € < 7y, if we fix N adequately large so that
Z (204 q—2)u(0) ~
= y(£)N-(9=1)/2 ’
this estimate gives (4.22). O

Lemma 10. For j =1,2,3, we have

o(e?) (121)

(4.23) Ii(e) = o(e?™ ™) (—1<T<1) for e=(,.
o(e?™?) (T =-1)
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(Proof of Lemma 10) Proof for I (e):

|h<e>|§|r<M,ro>|< sup |8G’“’f|>< sup |<I>k,e<x>—<1>z<x>|>

z€l(M,ro) vy 2T (M,ro)

Using the estimates about bg 1, b1, in Lemma 4.1, we have

e? (r21)
(4.24) (DGY) Jom)irarrg)) S € § et7 1 (1< T < 1)
€2 (r£-1)

where ¢ is a constant independent of € and £. From the above estimate and Lemma 9-(4.22),
(0G,c/O0v1) 0 (M ry) Satisfies the same estimate as (4.24). Then we get the estimate for I;(e)
by using

lim  sup [P, (x) — P (x)] = 0.

S$— 00 :I;EF(M,T‘o)
Proof for I5(€): From A®) = —X\; P}, I2(e) is rewritten as

(425) _[2(6) = / Gkﬁe(ac)(—)\k@c(m) + )\k(G)(I)k’e((E))dLU
B(M,ro)\B(M,e)

o
= X [ b g )
) M Je Sa—1

£20,1<p=<.(¢
X (= Ak (2) + A () Pr.e(x)) X pa(&, 7, w)r? ™ dwdrds(€)

Here we put p = SUp,cp(as,r) P2(x). Since 0 < (r=t79+2 — ro TPl pa=1 < el for
0 < r < rg, we have

Ll <p > /M//S 1b.p| l,p(W)|| = Ak @ (€)+ Ak (€) P () [r~H dwdrds (&)
(@M S5

£20,15p=.

A

P @ [T el = MO e) 4 MO (ol ()
) ¢ Je

£20,15p=e(l
= I21(€) + I2.2(€) + T2,3(e)-
The above terms I5 1(€), I22(€), I 3(€) are given below.

L1 (€) = pesy(0) (/2 / / / P lbout] | = M@ () + A (€) B () [deodrds(€)
M Je Sa—1

Bafe) = e ()02 30 [ [T bl = M)+ Ml ) ddr s

1=p<q

ro
La(@)=per Y. A0 / / / by | |~ Mo (@) (€) B () 1~ deodrds (€).
) M Je Sa—1

022 1<p<u(¢

[The estimate for I 1(¢)] Using by 1 in Lemma 7, we have, for 7 = 1,

(/e =pear @ [ [ [ vl - Ml o) + () o) dadrds(©).
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Put € = (s and take s — co and apply Lebesgue bounded convergence theorem and we get
élg{)lo I31(¢s)/¢d=0 for 721.
Similarly we have
Sli}r{.lolm(g‘s)/ggﬂ_l =0 for —-1<7<I, sli}ngolg,l(gs)/cg_Q =0 for 7<-1.
[The estimate for I 2(€)] Applying the same argument we get
91520 I 2(¢s)/¢I=0 forany 7€ (—00,00).
[The estimate for I 3(¢)]

B9 < [ Feadn Y- ey 012
€
>2
)
X / / / | — M@ () + A (€) P e () |[dwdrds(§) x € for 7 = 1.
M Je Sa—1

Take N adequately large so that 3,5, ¢(£)y(¢) "N +(071/2 < o0 and get lim,_,0 12 3(€) /€7 = 0
for 7 2 1. Similarly we get

I
im 23 0 fr 1<r<1 lim L()

=0 for 7<-1.
e—0 471 e—0 €9~

Summing up these estimates we get the estimates for I5(e) in Lemma 10.
Proof for I5(¢): Using the expression of the Laplacian in (2.10) in the local coordinate system
(517 e 7£WL7T717 e anq)7 we have

AGI“E(JS) = J1(Gk76) + JQ(G}g,e) + Jg(Ghe) + J4(Gk,€)

where
id 8Gk€>

4.26 J1(Gre) = E 1/ i, ,
( ) 1( k, ) m 1<lj<m ( )g (f 77) 85]

1 3 d aer S i50°Ghc

pu— — + I

V9 1< em &; (Vag” 3@ \<igem 06,06
4.27 Jo(G ) = —F/— < 5’ i,m—+L g’ s )
(4.27) 2(G.e) E) lgiém?lggq 2%, V(& ny ( 77)7077@

1 9 o 0Gh. 0@ (0Gh.
_ Z (\/ggz,m+€) k, + Z " +€< k >

Vo 15iSm,155q 0% One 1<i<m,150<q One \ &

(128)  Jo(Gro) =

(\/mgm“’j (&m) 8Gk’6)

0§

0
2 5’ 1<]<;<g< e

) ey G ns O (0G.
G T gt G 5 gt ()

0 o0&
1<j<mu<e<q O 1<j<m1<i<q e $
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8 aGk €
(4.29) J4(Gk7€) . Z v ( g(g,n)g7rz+€1,m+€2(§7n)’)
v 1<21 22<q 877£2
1 ) 9G.c 0*Gr.e

= > gy (agmrh) Do (g g —6(t, L))

VI 1<iinza O O <fisa Oes01e
We used 37 ;| 9*°Gk/0n? = 0 in the last line of Jy.

(430) 13(6) = .[371(6) + .[3’2(6) -+ I3’3(6) =+ I3’4(6)
where
Lsa(e) = / T (G (Bpc — B)da
B(M,ro)\B(M,e)

Ia(e) = / To(Groe) (B — @)
B(M,ro)\B(M,e)

Iya(e) = / J5(Groe) (®re — Bp)
B(M,ro)\B(M,e)

13,4(6) = / J4(Gk,e)(q)k,e — ‘I);C)d.fc.
B(M,ro)\B(M,e)

To deal with these four terms in (4.30), we need to look at several terms of first and second
derivatives of G .. We consider the law of the change of the variable as follows.
or _ n ow 1

o v o r )

Here a; is the unit vector in R? whose i—th component is 1 while other components are all
zero. Note that 7;/r = w;.

0%r 1 0w
o2 wiwj), T =
anzanj r( ( .]) 2 ]) 87”2877‘7 T2
By using this transformation of the variables, we get the expression of the higher order
derivatives of Gy w.r.t. &,m; (1Si<m, 1< 5= q).

(0(, jw + wiwjw — wia; — wa;)

0Gr. OGL. 1
(4.31) 8:-’ = 8:7 w; + ;(Vka,e,(ai — ww))
0?Gr. 0°Gi. 190Gk, ) 1,0
(432 G = D+ LTG0, ) — wis) + (Vs (04— i)

1
(V2 Gr,e(a; — wjw), (a; — wiw)) + ﬁ<vak,ea 81, w4+ wiwjw — wia; — w;ag)

Here

(4.33) VoG = Z by p(r— 712 rg”“”%«f)vwwm(w)
£20,15p=u(0)

(4.34) V2Gre= > bpp(r Tt 20920, (W),

£20,15p=(0)
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0G}, ¢ o Y _
s el S (g2 g ),
£20,15p=e(8)
P Ghe - 20— qt2 o2
(436) — 3= D bep((—l=g+2)(—l—g+D)rTI—L((=1)r ) p(w),

020,1<pZu(0)

On the other hand, we have
e Dbiyy . o o
(4.37) @)=Y (FATT g g (W),

% 015 O
0?Gl.c 9% . 20—
(4.38) Gege W= D (gegt )T g (@),
VS Y87

£20,15p=.(0)

From now, we estimate each term of I3(e) in (4.30). I 1(€) can be dealt with similarly as in

I(e) because V¢Gy . and Vgkae satisfy the same property (i.e. Lemma 7 and Remark 7).
Next we consider |I52(¢)l, |13 3(€)],

T32()] < / Ta(Groo)| [ — @ ld,
B(M,ro)\B(M,e)

sa(0)] < / Js(Gro)| B — Blda
B(M,ro)\B(M,e)

Both of |J2(Gk,e)|, |J3(Gr.e)| are bounded by a fintite linear combination of |V, G|,
|V (VeGre)|. Moreover, |V, G| is bounded by a finite linear combination of |0,Gi,|
and (1/7)|V,Gr.el- [Vy(VeGi,e)| is bounded by a finite linear combination of |0, (VG )|
and (1/7)|V¢Gp e|. So we estimate the following four quantities,

/ 10, G| | B — B |de, / (/1) VG| [Bpe — Bl |da
B(M,ro)\B(M,e) B(M,ro)\B(M,e)

/ 10,(VeGio)| |Bpe — @ |dr, / (/1) Vo (VeGroo)| [Brc — B lda
B(M,ro)\B(M,e) B(M,ro)\B(M,e)

Using (4.33), (4.35), we can estimate these quantities (as in I2) and get the same estimate.
Each of this term has the asymptotic behavior

o(e?) for 721
o(edt7 1) for —1<7<1
o(e?72) for 7 -1
Accordingly we obtain
o(e?) for 721
I35(e) + I3 3(e) = § o(ed™7 1) for —1<7<1.
o(e?72) for 7< -1

T3 a()] < / Ta(Groo)| [ — @ Jd.
B(M,ro)\B(M,e)
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In the expression of Jy, the following inequality
|gm TR (g ) = 8(0r, L)| S el = e
holds where ¢ is a constant which depends on M and ry (cf. Lemma 2). From (4.29),
|J4(G.e)| is bounded by a finite linear combination of [V, Gy | and 7 [V2Gy c|. Moreover
We need to estimate fB(M,TU)\B(M,e) 7 |he(z)||®k,e — ®)|dz where h.(x) is one of the fol-
lowing terms
82Gk,e laGk,e }g
or2 7 r or  ror
Eventually we have obtained

1, 1
(vak,e)a ﬁvak,ea ﬁvak,e

o(e?) for 721
I3 4(e) =< o(ed771) for —1<7<1.
o(e172) for 7 -1
Summing up these estimate we have completed the proof of Lemma 10. O

This lemma asserts that I (e), Iz(€), Is(€) can be absorbed in higher order tems and are
negligible in the Theorem 1. So we will see that all the important terms the theorem come
from I4(e).

Lemma 11.

0Py,

QAM4)5w1¢yw=:—“”;6q/;«vﬂémae@xe@»@z+<vN¢k@va¢uo»d4@

+O(erH)

/ o€ By (), (z)dS = |Sq_1|‘7€r+q_1/ O (€) @ (§)ds (&) + O(e™)
T'(M,e) M
Proof. These two asymptotics are deduced with the aid of the Taylor expansion around
£ € M. Actually we expand two functions V®(x + (ew) - e(§)) and @) (z + (ew) - €(£)) at
e = 0 and carry out integration on I'(M, €).

O

Lemma 12.

. o(€?) (rz1)
/ foi(m)adeS =Jo(e™™h) (1< T<1),
re 1 of?) (=1

o(e?) (rz
/ Gl w)oe BrdS = S o(er™ 7Y (~1
Hno o) (r=

Proof. The estimates directly follow from Lemma 9-(4.20).
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We begin to evaluate I4(€). Since G (x) = GSZ (x) + G,(fz (x), we have

(b/
(4.39) Ii(e) = / (Q + o€ D) D, dS — G,ﬁ“(@ + €D} )dS
(M) I roe 0 O

0P,
- G (k| e d!)dS.
/F(I\/I,e) k,e( ay )

From Lemma 12, the last term in (4.39) is included in higher order terms. The first term,
second term and third term are denoted by I41(€), Ls2(€) and I4 3(€), respectively. That is,

(4.40) Ii(e) = In1(€) + Lao(e) + 1a3(€)

and I, 3(e) is a higher order term.
We calculate Iy 1(e) with the aid of Lemma 11 in five different cases.

Hr>1, ()r=1, (i) —-1<7<1, ({v)r=-1, (v)7<-1L

(i) 7> 1:

tig 2421 — L (920 6(6),c(©)04(6) + (T (€, TaO))as(©
(i) 7 =1:

lim I4elq - ‘/ (V204 (£)e(€), e(€))P5(€) + (VN Pi(E), VNP (£)))ds(€)

+571o /M D1 ()} (€)ds(€)

(iii) -1 <7 < 1:

tig S 15770 [ @@ (@ds(6)
(iv) 7 =-1: .
ti 242 — 151720 [ @i (©ds(6)

(v) The case 7 < —1 is dealt with seperately later.

Next we calculate the second term Iy 5(e) in Iy(e).

@/
(4.41) —Iya(e) = / Ggg& + o€ ®})dS
(e 0 0n

/

0]
:/ bo,1 (r™ "2 — rg )01 (w )(a k4 oem®))dS
I'(M,e) 19,21

+Z/

1 gtz —at2y O o
= W o )b071(e - )(a—y1 + o™ ®)dS

_ 0P,
T = i) p(w) (5, E o B )dS
(M, e) V1

/

_ 0P -
|5q 1|1/2 Z/ (M) bip(e” 4 — 1y e)wy( 3yf + 0”@ )dS
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( q+2 —q+2)/ aq);c ,
= b TP )dS
|Sa—1[1/2 — 0’1(81/1 +oe" @)
/2

|5q 1|1/2 —att — 1o e Z/ b1, pwyp( J + 0" @y )dS

T'(M,e)
By the way, we have
3(13;6 , ’ q—1
(4.42) /ll o s, = /S sz (VO (E+ (ew-e(§))), ei(€))e? "dw
n a—1

= —¢ Z<V2‘I);€(§)ei(§), 61(£)>|Sqq| 4 O(€q+1).
pr (VP& + (ew - e())), e (§)>Wi6q_1dw

o0/
4.43 bds) = /
( ) /| 8V1 Sa—1 P

— T (€), ep()) T

+ O(e?).

(4.44) /| TS, = 0180 + O(0)
nl=e

[S 1

(4.45) / o’ wp®dS) = o™t ——
Inl= q
Substituting (4.42)-(4.45) into I 2(€), we have

—Iy2(€) =

(VE5(8), en(£)) + O(e))-

( —q+2 _ q+2

K (e 3 (920} (€)ex(€), el )L + e 1)1 4 0(e)
|Sq 1|1/2 01 — P2 q

ds(€)
n / eI §9 Y by | (@, (€) + O(e))ds(€) }
M

q'/? 1

q— 1 / |Sq 1|
e Z{/ bal (VL) () 4 o(enaste)

i /M aef+q'5qq_'b1,p<<v<b;<f>, e(£)) + 0())ds(€))
(02 —rg TP sa 12

q (] boa(cen S (TR (©).es(€) + O(e ) (1-+0(e)ds (e

i=1

’ /M qoe” ™ bo 1 (P (€) + O(e))ds(€)}

—1|1/2
|§a-1[1/ T

qi/2

€) ;{/M b1 p (=€ (VPL(E), €p(8)) + O(e))ds(8)

167
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* / o€ by p((VOL(€), ep(€)) + O(e))ds (&) }-
M

Using Lemma 7, we can calculate the asymptotics of I, 2(€) seperately in five different
cases:

Hr>1, ()r=1, (@{i) —-1<7<1, (iv)yr=-1, (v)7<-L

(1) The case T > 1:

lim —l12(0) |Sq | Z/ V®L(£),e,(E))(VP)(€), ep(€))ds(€)

e—0 €4 (I* 1
N /
STESY /MWNq)k(f)a Vn®(£))ds(§)

(2) The case 7 = 1:

iy —e2() ST Z (70 € THLLE). e

e—0 ed q _ 1
51 ,
(3) The case —1 <7 < 1:
o —lyp(e)
151,(1) eq+7—1 =0
(4) The case T = —1:
—laz2(e)

lim

e—0 €972

S B e RGLAGENG

(5) The case 7 < —1 is dealt with seperately.
We calculate the asymptotics of I(€) by I41(€) and Iy 2(€), we have

10 z:né%?ﬂ:% A ]
_ |Sq | / (V2D(€)e(€), e(€))DL(E) + (V Dk (E), V@ (6)))ds(€)
Ei /
r— /M<qu>k<g>,qu>k<£>>ds<f>

=L [ (9700(6)6(6). () 819+~ (Vu(e). Tt ©)as(€)
Using Proposition 3, we have
(V20 (6)e(€),e(€)) = ADy — Apy®y, + H[®p] on M.
Substituting this relation into the above with the aid of

AB = N [ (AuB)Bds(©) = = [ (Ta Vad)as(©
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we obtain the formula

I Sa—1
lim 1(9) = | | / {q_ql<qu)k7vN‘I);c> —(Vu®r, V@) + A\ @i @), — @%H[@k}} ds(§).

e—0 €4

which gives Theorem 1-(1).
For the case 7 = 1, we can similarly calculate

- I4€q 18T \/ (V2 ( )6(5»@;(5)+ﬁ(VNq)k(f%VN‘I)Z(S»)dS(f)
157 o / 4 (€)2(€)ds(6)
|51~ 1|/ {q_l (Vn®r, Vd,) — <VM<I>k,VM<I)Z>‘I’;€H[@k]}dS(E)

591 (0 + (/) /M By ()} (€)ds(€)

which gives Theorem 1-(2).
For the case —1 < 7 < 1.

tim ) _ 150 1\/ By ()} (€)ds(€)

e—0 ¢q4t+7—1

which gives Theorem 1-(3).

For the case T = —1.
e;o eq a|$ 1|/ ds(€) — o] ST o m%(f)‘l’%(f)ds(f)
-2
= It MMM)%(&)@(@

which gives Theorem 1-(4).
For the case 7 < —1, we use (4.18).

oG} pry Plere) Y
447) I(e) = gl — Wk ) g9 4 / hegr — GZTE ) gg
( ) 4(6) /F(M,e) ( vy ke Ovy T'(M,e) 19,21 ke oy

Due to Lemma 9, the second term is O(e?~!). Evaluating the first term with

G;(f,l@v) = bo,1 (€772 — 15 )01 (w)

0G}, . _ -
() =t 2 st me et =1 ()

Ga—1|1/2
boa = [S7 122 (@,(6) + 0(©), bip = 'qme%wk(a,ep(e»u +0(e)
for 7 < —1, we have

L) _ (950 /M D4 (€) 2 (€)ds(¢)

which leads to Theorem 1-(5).

e—0 €4
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We investigated the asymptotics of (Ag(e) — Ag) for € = (s and s — oo through (4.14)
and saw that the result does not depend on the choice of the original sequence of {¢,}5%;.
So the limit holds for e — 0 in each case of Theorem 1.

The case of Neumann condition on I'(M, €) can be dealt with similarly as the case 7 > 1
of the Robin condition on I'(M,€). Actually we can put o = 0 and rewrite the proof and
deduce the formula of Theorem 1-(0). O

5. PROOF OF THEOREM 2

In this section we deal with the case ¢ = 2 to prove Theorem 2. All the process of the
proof of Theorem 2 is quite similar to the case of Theorem 1 (¢ = 3). So we do not give a
complete proof for Theorem 2, but give only the scketch.

First we construct an approximate eigenfunction ®y, .

For the approximate k—th eigenfunction, we need to add a correction term to @y (similarly
as the case ¢ 2 3). In the local coordinate (1,82, ,&m,n1,m2) we consider the following
Laplace equation for each £ € M.

Ayp=0 for e<|n<rg, ¢=0 for [n|=ro,

0 0
90 ocs) = (ule - () + +oTBuE + - e(6))
Iy mi=e  \n Inj=
for each £ € M.
This is the Laplace equation in a 2—dimensional annulus and it can be solved by a
kind of the Fourier series expansion method. We use the polar coordinate n = rw € R2,

w=w(f) = (cosf,sinf) in R%. w; = cosh, ws = sinf. The solution ¢ is expressed by
(5.1)  ¢(r,0) =ag+bologr + Z (apr’ +bopr e, (0) (e <7 < 1,0 €SY).
>1,p=1,2
Here ¢p,1(0) = (1//7) cos €0, g 2(0) = (1/4/7)sinfh. Note that ¢(¢) =2for £ 2 1, 1(0) = 1.
From the boundary condition on I'(M, (), we have
ag + bologre + Z (apprb + bepro pep(0) =0
>1,p=1,2

which gives
ag + bglogrg =0, a&prg + bg7p7°04 =0 (({z1,p=12).

ag = —bglogrg,ap, = —bgyprofﬂ
¢(r,0) =bolog(r/ro) + Y bep(r™ =151 )00, (0)
£21,p=1,2

From the Robin boundary condition on || = e,

bo

r

+ Z bep(—0r= Y — trg 2 ort=Y) gy, ,(6)

£21,p=1,2

+o€” | by log(r/ro) + Z bé,p("qiz - 7‘0_%7“2)90@,1,(0)
£21,p=1,2

=€
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== D (VK& + () - (&), ei(€))wi + o€ (€ + (ew) - ()
which is rewritten ;;

+o€” (bo log(e/ro) + Z bé,p(eie ) 2654)‘/’@4)(“))

021,p=1,2
2
=- ZW%(& + (ew) - e(€)), ei(§)w + o€ B (& + (ew) - e(€))

((=1/€) + o€ log(e/ro))bo

1

2
~or o (= Z<V¢k(§ + (ew) - e(8)),ei(&))wi + o€™ Pp (€ + (ew) - e(€)))db
i=1

(@e*l*1 + 67‘5%6271 + o€ (e ¢ -1 2eez))bg,p
= /51(_ Z(V%@ + (ew) - €(§)), €i(§))wi + o€ @i (€ + (ew) - €(€)))pr,p(0) dO

1

(5.2) bo = (=1/€) + o€ log(e/ro)

Z V(€ + (ew) - e(§)), ei(§))wi + o€ D (€ + (ew) - e(£)))do

1
fe=0—1 4 Erawo el=1+oem (et — ra%e‘)

(5.3) bep =

2
[ SoTRE T () €)@ + 76T B(E+ () )i (6)
i=1
Here wy = cosf,wy = sin 6.
The asymptotic behaviors of by 1, bo, and the estimates of by, (¢ = 2) in Lemma 13,
Lemma 14 are proved similarly as in Lemma 7 and Lemma 8.

Lemma 13. (i) {=0.

me*{(e(£), V2Pr(£)e()) + O(e)} (r>1)

b — me?{(e(£), V2Pr(£)e(§)) — 2091() + O(e)}  (1=1)

"7 ) 207 (@4(€) + O(€)) (—l<r1<1)
(27/log(1/€))(P1(§) + O(e)) (r<-1)
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(ii) £ =1
brp = 1 H{VR(E), ep(€))€”
1
Lemma 14. ¢ = 2.
elt? for
< v (742
|bep| = S(OF € for
et for

For ¢ = 2, y(¢) = (2. Gj(x) is uniformly convergent in B(M,rq) \ B(M,¢) for each

SHUICHI JIMBO

720
-1<7<0
T<-1

e > 0. This property is also true for VPG, (z) for any p € N.
Similarly as in section 4, divide Gj, . as G () = Glglz () + Gl(fz () where

2

T>-1)
(r=-1)
(r<-1)
(p = 172)

chlz(x) = b1 log(r/ro) + Z bip(r™t —ry2r)e1,(0),

p=1

G)(z) =

0>2,p=1,2

Lemma 15. There exists ¢, > 0 such that

€2 for

G (@) Sepx 2 for

€ for

Preie) € for
\ 8ykl,€ ()| Scp x § e tL for
1 for

et for

|G,(€2Z(x)\ S x et for

e for

for 0 < e < e.

720
-1<7<0
T<-1

720
-1<7<0
|

720
-1<7<0
T<-1

Z bg,p(r*e — r(;”rf)w,p(e).

(x e T(M,e)

(x e T(M,€))

(z € (M, e)

[Calculation for the detailed asymptotic behavior for \?(e)]

We put Ap(e) = /\k}"iE and @ () = ®F () for brevity. A similar calculation as in the

section 4 gives

() =2 [

Q(e)

(5.4)

where

Il (6)

o / aGk,e
(M) V1

Oy ()P e (x)dx = I1(€) + I2(€) + I3(€) + Lu(e)

(Pr.c(w) — P ())dS
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I(e) = / (AGo(2))(Bpo() — B ())de
B(M,ro)\B(M,e)

I5(e) = / Gre(2) (AP () + A (€) P e (2))d
B(M,ro)\B(M,e)

o oy

dGy a@/)
Ii(e) = Q) — G2 ) dS.
49 /I"(M,e) < on * Mo

We carry out the similar estimates for I (€), Iz(e), I3(€) for e = (5 and see the behaviors for
s — oo and we can conclude that thiese terms are negligible in the asymptotics in Theorem
2-(1), (2), (3), (4). So the main term of pertubation comes from I,(e). We calculate Iy (e)
with the aid of Lemma 13, Lemma 14, Lemma 15 with the similar estimates like in the
section 4. and get Theorem 2-(1),(2),(3),(4). Theorem 2-(0) is proved just as in Theorem
2-(1) by putting o = 0.

d ol
Iu(e) = /1“(M ) ((ak + €™ Py ) D) — Gk76(h + UeT<I>;C)) ds.

I,(e) is also written as
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