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APPLICATION OF THE j-SUBGRADIENT IN A PROBLEM OF

ELECTROPERMEABILIZATION

ZAKARIA BELHACHMI AND RALPH CHILL

Abstract. We study a coupled elliptic-parabolic Poincaré-Steklov system arising in elec-

trical cell activity in biological tissues. By using the notion of j-subgradient, we show
that this system has a gradient structure and thus obtain wellposedness. We further ex-

ploit the gradient structure for the discretisation of the problem and provide numerical

experiments.

1. Models and problem formulation

Various problems in fluid mechanics, contact mechanics, heat transfer or diffusion across
membranes lead to parabolic or coupled elliptic-parabolic systems of partial differential
equations (or inequations) with nonlinear, dynamical conditions prescribed on a Riemannian
manifold Γ (see [23]).

We consider in this article the problem

−∆u(t, x) = 0 in IR+ × (Ωi ∪ Ωe),

∂t [u] + s([u])− σe ∂neue = 0 on IR+ × Γ,

[σ∂nu] = 0 on IR+ × Γ,

ui = gi on IR+ × (∂Ωi \ Γ),

ue = ge on IR+ × (∂Ωe \ Γ),

u(0, ·) = u0 in Ωi ∪ Ωe.

(1.1)

Here, s is a given real function, Γ is a Lipschitz regular manifold, Ωi and Ωe are two disjoint,
open sets with Lipschitz regular boundary such that

Γ ⊆ ∂Ωi ∩ ∂Ωe,

and

[u] = ui|Γ − ue|Γ
is the difference of the traces of ui := u|Ωi

and ue := u|Ωe
on the part of the common

boundary Γ. Moreover, g ∈ H1(Ωi ∪ Ωe), and we denote by gi := g|Ωi
and ge := g|Ωe

the
restrictions of the function g, as well as their traces on ∂Ωi \ Γ and ∂Ωe \ Γ, respectively;
there will be no danger of confusion when we denote the functions in the interiors and on
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the boundaries by the same letter. We denote by ni and ne the outer normal derivatives at
the boundaries of Ωi and Ωe, respectively, and we denote by

[σ∂nu] = σi∂ni
ui + σe∂ne

ue = σi∂ni
ui − σe∂ni

ue

the jump of the outer normal derivatives on Γ; note that ni = −ne almost everywhere
on Γ. Here, σi, σe > 0 are the (constant) conductivities in Ωi and Ωe, respectively. In the
applications which we have in mind, Ωi plays the role of an interior domain, Ωe is an exterior
domain, ∂Ωi = Γ and ∂Ωe = Γ∪̇∂Ω.

When the manifold Γ is the external boundary of a set Ω, a gradient system structure
has already been identified for similar problems, namely for problems involving the Dirichlet
to Neumann-Steklov-Poincaré operator. By applying a recent approach from Chill, Hauer
& Kennedy [7], we identify an abstract gradient system structure for the problem (1.1),
and thus provide a unified framework to solve it. The point in this approach is that the
gradient structure is identified on the boundary space L2(Γ), where the actual evolution
takes place, but we work with an energy defined on H1(Ωi ∪Ωe). We emphasize that in the
gradient system framework, a standard and complete theory for wellposedness, regularity,
asymptotic behavior, as well as a large choice of efficient numerical methods for computing
solutions are well established, and in particular, a large class of steepest descent methods
and optimization approaches with well known properties are ready to use.

Following the seminal work of Hodgkin & Huxley [16], a lot of examples of systems of
equations like problem (1.1) were considered in the study of the electrical cell activity in
biological tissues [11, 13, 12]. As a particular example, we consider a revisited version of a
model introduced recently by Kavian, Leguèbe, Poignard & Weynans [18] for the electro-
permeabilisation (or electroporation) of the membrane of a cell subjected to a short electric
pulse. Roughly speaking, under a high transmembrane (electric) potential, the membrane
becomes more permeable, thus allowing the diffusion of some molecules; we refer the inter-
ested reader to [9, 10, 26, 28, 19, 17, 27, 18, 21] and the references therein for more details on
the modelling and the numerous applications of this problem. In their article, Kavian et al.
proposed and analysed a mathematical problem to describe qualitatively the electroperme-
abilization for a single cell. They considered a static and a dynamical model with a function
s ensuring a smooth transmission between two states of the membrane conductivity. We
emphasize that their dynamical model does not fit into our approach limited to autonomous
systems like (1.1) with the function s independent of time, however, we have less restrictive
assumptions for s, Ωi and Ωe which enlarge the type of problems for which we can identify
the abstract gradient structure. In principle, it is straightforward to generalise the theory
to quasilinear equations, for example, for equations where the Laplace operator is replaced
by the nonlinear p-Laplace operator (see Remark 4 below).

The article is organised as follows. In Section 2 we present the theoretical background
which leads to the observation that the coupled elliptic-parabolic system (1.1) is a gradient
system. Well-posedness and regularity of solutions then follows from classical results. In Sec-
tion 3 we discuss the discretisation of the problem (1.1) relying on the theoretical framework
and results obtained in Section 2. In Section 4 we present numerical experiments based on
the abstract results. We compare the numerical solution with an analytical solution in the
context of a simple geometry and a linear transmission law, and provide numerical solutions
in the context of nonlinear transmission laws or more complicated geometries.
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2. Gradient structure

Before turning our attention to the evolution problem (1.1), we consider the stationary
problem

−∆u = 0 in Ωi ∪ Ωe,

[σ∂nu] = 0 on Γ,

s([u])− σe ∂ne
ue = f on Γ,

ui = gi on ∂Ωi \ Γ,

ue = ge on ∂Ωe \ Γ,

(2.1)

with a given right-hand side f ∈ L2(Γ) and a given function g ∈ H1(Ωi ∪ Ωe). Here again

[u] = ui|Γ − ue|Γ
is the difference of the traces of ui := u|Ωi

and ue := u|Ωe
on the common part of the

boundary Γ, and [σ∂nu] = σi∂ni
ui − σe∂ni

ue is the jump of the outer normal derivatives.
Let

H1
0,Γ(Ωi ∪ Ωe) := {u ∈ H1(Ωi ∪ Ωe) : ui|∂Ωi\Γ = 0 and ue|∂Ωe\Γ = 0}.

We say that a function u ∈ H1(Ωi ∪ Ωe) is a weak solution of the stationary problem (2.1)
if u− g ∈ H1

0,Γ(Ωi ∪ Ωe) and, for every v ∈ H1
0,Γ(Ωi ∪ Ωe),∫

Ω

σ∇u∇v +

∫
Γ

s([u]) [v] =

∫
Γ

f [v],

where σ is piecewise constant, namely σ := σi on Ωi and σ := σe on Ωe. Observe that if
u is a weak solution of the stationary problem, then it satisfies the boundary conditions on
∂Ωi \ Γ and ∂Ωe \ Γ in a weak sense, and

−∆u = 0 in D(Ωi ∪ Ωe)
′,

as one can see by considering test functions v ∈ D(Ωi ∪ Ωe) in the definition of a weak
solution. Then the Gauß-Green formula implies, at least if u is regular enough, that for
every v ∈ H1

0,Γ(Ωi ∪ Ωe),∫
Γ

f [v] =

∫
Γ

σi ∂ni
uivi +

∫
Γ

σe ∂ne
ueve +

∫
Γ

s([u]) [v]

=

∫
Γ

[σ∂nu]vi −
∫

Γ

σe ∂neue[v] +

∫
Γ

s([u]) [v],

and from here one sees that the two remaining boundary conditions on Γ are satisfied, too.
Accordingly, we call a function u ∈ L2

loc(R+;H1(Ωi∪Ωe)) a weak solution of the evolution
problem (1.1) if u − g ∈ H1

0,Γ(Ωi ∪ Ωe) for almost every t ∈ R+, [u] ∈ C(R+;L2(Γ)) ∩
H1
loc((0,∞);L2(Γ)), [u]|t=0 = u0, and for every v ∈ H1

0,Γ(Ωi ∪ Ωe) one has∫
Ω

σ∇u∇v +

∫
Γ

s([u]) [v] = −
∫

Γ

∂t[u] [v] for almost every t ∈ R+.

As pointed out in the Introduction, we show existence and uniqueness of weak solutions
by showing that the evolution problem (1.1) has a gradient structure.

For this, we follow the approach which has recently been developped in Chill, Hauer &
Kennedy [7] and which is in some sense hidden in the definition of weak solution of the
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stationary problem or the evolution problem. More precisely, we consider the energy space
V := H1(Ωi ∪ Ωe), the reference Hilbert space H := L2(Γ), the bounded, linear operator

j : H1(Ωi ∪ Ωe)→ L2(Γ),

u 7→ [u],

and the energy E : H1(Ωi ∪ Ωe)→ R ∪ {+∞} given by

E(u) =


1
2

∫
Ω
σ |∇u|2 +

∫
Γ
S([u]) if u− g ∈ H1

0,Γ(Ωi ∪ Ωe),

+∞ else,

where S is a primitive of s. For the effective domain one has the equality D(E) = g +
H1

0,Γ(Ωi ∪ Ωe), and the energy is continuously differentiable on this affine subspace as one
easily verifies. Moreover, E is globally j-quasiconvex and j-quasicoercive in the sense that
the “shifted” energy

Eω : H1
0,Γ(Ωi ∪ Ωe)→ R,

u 7→ E(u) +
ω

2

∫
Γ

[u]2

is convex and coercive for every ω large enough; in fact, ω > L is sufficient, where L ≥ 0 is
the Lipschitz constant of s. Recall that coercivity of Eω means that the sublevels {Eω ≤ c}
are bounded for every c ∈ R; it follows in this special case by an application of the first
Poincaré inequality. We then define the j-subgradient of E by

∂jE := {(w, f) ∈ L2(Γ)× L2(Γ) : there exists u ∈ D(E) s.t.

w = [u] and for every v ∈ H1
0,Γ(Ωi ∪ Ωe) one has

lim inf
t↘0

E(u+ tv)− E(u)

t
≥
∫

Γ

f [v]}

= {(w, f) ∈ L2(Γ)× L2(Γ) : there exists u ∈ H1(Ωi ∪ Ωe) s.t.

u− g ∈ H1
0,Γ(Ωi ∪ Ωe), w = [u], and

for every v ∈ H1(Ωi ∪ Ωe) one has∫
Ω

σ∇u∇v +

∫
Γ

s([u]) [v] =

∫
Γ

f [v]}

(2.2)

The equality between the first and the second line follows from the identification of the
effective domain, from the fact that E is continuously differentiable in the affine subspace
D(E), and the special form of its derivative (in fact, Gâteaux differentiable would be suffi-
cient). The following important and at the same time almost trivial lemma is an immediate
consequence of the definition of weak solution of the stationary problem (2.1) and of the
definition of the j-subgradient.

Lemma 1. One has (w, f) ∈ ∂jE and w = [u] as in the definition of ∂jE, if and only if u
is a weak solution of the stationary problem (2.1).

Note that the definition of the j-subgradient differs from the usual variational setting in
the sense that the energy is not defined on the space L2(Γ) itself, so that the j-subgradient
is not a classical subgradient as defined, for example in [6]. Moreover, we are also not in
the usual variational setting of a Gelfand triple in which one has, in particular, a dense
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embedding of the energy space V into the Hilbert space H = L2(Γ). Our operator j has
dense range in L2(Γ), but it is clearly not injective since the space of test functions on Ωi∪Ωe
belongs to the kernel of j. Note also that the j-subgradient may be a multi-valued operator
even if the energy on the energy space V is smooth.

By [7, Corollary 2.7], and since the energy is j-quasiconvex and j-quasicoercive, the
j-subgradient ∂jE is a maximal quasimonotone operator on L2(Γ), that is, the “shifted”
operator ωI + ∂jE is maximal monotone on L2(Γ). Moreover, by [7, Corollary 2.7] again,
the j-subgradient is already a subgradient, that is, there exists a quasiconvex, lower semi-
continuous functional EH : L2(Γ)→ R ∪ {+∞} on the reference Hilbert space such that

∂jE = ∂EH ,
where ∂EH is a classical subgradient. Theoretically, [7, Theorem 2.9] provides a description
of this energy defined on L2(Γ), but this description seems not to be useful for the discreti-
sation considered below. For the purpose of this section, it is only important to know that
such a functional EH exists. Moreover, by [7, Theorem 2.9], the effective domain of the
functional EH can be characterised as follows:

D(EH) := {EH < +∞}
= j(H1(Ωi ∪ Ωe))

= H
1
2 (Γ).

Here, the second equality is actually [7, Theorem 2.9], while the third equality follows from
the theory of traces of Sobolev functions [1]. In particular, the effective domain is dense in
L2(Γ), and hence the same is true for the domain of the j-subgradient. From these obser-
vations we conclude that our system (1.1) can be rewritten as an abstract, nonautonomous
gradient system of the form

(2.3) ẇ + ∂jE(w) 3 f, w(0) = u0,

where w := [u] is the unknown function from which one has to compute the original so-
lution u by solving, at each time t, an elliptic problem. The identification of the effective
domain and the classical theory of maximal monotone operators and subgradients of con-
vex, lower semicontinuous energies (see, for example, Brezis [6, Théorèmes 3.2, 3.6]) yield
well-posedness of this problem in the following sense.

Theorem 1 (Existence and uniqueness for the abstract gradient system). For every right-
hand side f ∈ L2

loc(R+;L2(Γ)) and every initial value u0 ∈ L2(Γ) the gradient system
(2.3) admits a unique solution w ∈ C(R+;L2(Γ)) ∩H1

loc((0,∞);L2(Γ)) and w(t) ∈ D(∂jE)

for almost every t ∈ R+. If, in addition, u0 ∈ H
1
2 (Γ) (and f ∈ L2

loc(R+;L2(Γ))), then
w ∈ H1

loc(R+;L2(Γ)). Finally, if u0 ∈ L2(Γ) and f = 0, then w ∈ C(R+;L2(Γ)) ∩
W 1,∞
loc ((0,∞);L2(Γ)).

Remark 2. Strictly speaking, [6, Théorèmes 3.2, 3.6] only apply to convex, lower semicon-
tinuous energies, but the proof easily carries over to the case of quasiconvex energies. This
is actually true for each of the following methods which may be employed in order to prove
the above well-posedness result: the proof by time discretisation (implicit Euler scheme),
the proof by space discretisation (the Faedo-Galerkin method), and the proof by Yosida
approximations of the subgradient / Moreau-Yosida approximations of the energy, which
reduces the gradient system to an ordinary differential equation.
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A lifting yields then that the problem (1.1) admits for every u0 ∈ L2(Γ) a unique weak
solution, and this weak solution has the regularity described above.

Theorem 3 (Existence and uniqueness of solutions of weak solutions of (1.1)). For every ini-
tial value u0 ∈ L2(Γ) the problem (1.1) admits a unique weak solution u ∈ L2

loc(R+;H1(Ωi∪
Ωe)).

Proof. By Theorem 1, we already have the existence of a solution w ∈W 1,∞
loc ((0,∞);L2(Γ))

of the abstract gradient system (2.3). Choose ω ∈ R large enough such that Eω is convex
and coercive. Then the differential inclusion in (2.3) (with f = 0) can be rewritten as

ωw + ∂jE(w) 3 ωw − ẇ.
One easily verifies that ωw + ∂jE(w) = ∂jEω(w), where, as before, Eω is the shifted energy
functional. By definition of the subgradient (see (2.2)), and by the convexity of Eω, we have

∂jEω = {(w, f) ∈ L2(Γ)× L2(Γ) : there exists u ∈ D(Eω) = D(E) s.t.

w = [u] and for every v ∈ H1(Ωi ∪ Ωe) one has

Eω(u+ v)− Eω(u) ≥
∫

Γ

f [v]}

= {(w, f) ∈ L2(Γ)× L2(Γ) : there exists u ∈ D(Eω) = D(E) s.t.

w = [u] and for every v ∈ H1(Ωi ∪ Ωe) one has

Eω(u+ v)−
∫

Γ

f [u+ v] ≥ Eω(u)−
∫

Γ

f [u]}.

As a consequence of this identification, if (w, f) ∈ ∂jEω, then there exists u ∈ H1(Ωi ∪ Ωe)
such that u− g ∈ H1

0,Γ(Ωi ∪ Ωe) and

(2.4) u = arg min (Eω(v)−
∫

Γ

f [v]).

By choosing ω even larger, if necessary, we see from the special form of the energy E that
the function

H1(Ωi ∪ Ωe)→ R ∪ {+∞},

v 7→ E(v) +
ω

2

∫
Γ

[v]2 −
∫

Γ

f [v]

is strictly convex. Hence, the minimizer in (2.4) is uniquely determined. Standard arguments
for classical subgradients and inverses of strictly monotone operators yield that there exists
a constant C ≥ 0 such that for any pair u1, u2 ∈ H1(Ωi∪Ωe) of solutions of the minimisation
problem (2.4) for given functions f1, f2 ∈ L2(Γ) one has

‖u1 − u2‖H1(Ωi∪Ωe) ≤ C ‖f1 − f2‖L2(Γ).

Applying these observations on the differential inclusion above, we find that there exists
a unique u ∈ L2(0, T ;H1(Ωi ∪ Ωe)) such that u − g ∈ H1

0,Γ(Ωi ∪ Ωe) and [u] = w almost

everywhere. By construction, u is the unique weak solution of (1.1). �

Remark 4. We repeat that our approach to proving well-posedness of the system (1.1) is
formally restricted to the case when the energy does not depend on time, but the framework
we are working in allows us to consider several possible generalisations.



APPLICATION OF THE j-SUBGRADIENT 19

(a) The theory works in the same way if we choose s to be a function of the form
s = s0 + s1, where s0 is monotone (nondecreasing) and s1 is globally Lipschitz continuous.
The energy E is defined in the same way, with a primitive S of s, but its effective domain is
in general no longer an affine subspace, at least if s0 has superlinear growth. In this case E
is no longer Gâteaux differentiable on g +H1

0,Γ(Ωi ∪ Ωe), but merely lower semicontinuous.

The j-subgradient ∂jE is then only defined by the first line in (2.2). However, the energy
will still be j-quasiconvex and j-quasicoercive, so that the abstract problem (2.3) is still
well-posed in the sense described above.

(b) Similarly, like in the case of the Dirichlet-to-Neumann operator considered in [2, 3]
(linear case) and [7] (nonlinear case), the regularity assumptions on Ωi and Ωe may be
considerably relaxed. It suffices to assume that ∂Ωi, ∂Ωe and Γ have locally finite (d− 1)-
dimensional Hausdorff measure. Traces are then to be understood in a weaker sense; see
[8, 7] for the definition which goes back to Mazya [25].

(c) The method shows that the Laplace operator may be replaced by the p-Laplace
operator or any other nonlinear elliptic operator with variational structure. This might be
of importance if in the applications described in the Introduction it becomes necessary to
consider a larger class of models with nonlinear diffusion operators. In the present work we
shall show some numerical experiments, and we have therefore restricted ourselves to the
case of semilinear problems with the Laplace operator as leading operator.

3. Discretisation

In this section we propose to find approximate solutions of the problem (1.1) by using
a semi-discrete implicit time scheme, that is, given a time step h > 0, we are seeking a

sequence (zn)
[T/h]
n=0 , thought to be an approximation of (u(nh))

[T/h]
n=0 , where u is a solution of

(1.1). More precisely, (zn) is a solution of the discrete system

zn+1 − zn

h
+ ∂jE(zn+1) 3 0,

z0 = u0,h.

Recalling that ∂jE is actually a subgradient of some energy EH defined on L2(Γ), it is well
known that this system is equivalent to solving in each step a minimisation problem, and so
we obtain the so called proximal algorithm [4, 5, 22]:

z0 = u0,h,

zn+1 = arg min (EH(w) +
1

2h
‖w − zn‖2L2(Γ))

= arg min inf
[u]=w

(E(u) +
1

2h
‖[u]− zn‖2L2(Γ)),

where in the last inequality we have used an identification of EH from [7, Corollary 2.10].
Thus, instead of solving a minimisation problem for the energy EH , which is difficult to
identify or to handle in practical situations, we solve the modified proximal algorithm

z0 = u0,h,

ẑn+1 = arg min (E(u) +
1

2h
‖[u]− zn‖2L2(Γ)),

zn+1 = [ẑn+1],

(3.1)
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where now the minimisation is performed for the energy E in the reference energy space
H1(Ωi ∪ Ωe) (the effective domain of E). This energy is explicitly given, but we have to
pay a price by passing from a minimisation problem in the space L2(Γ) to a minimisation
problem in the reference energy space H1(Ωi ∪Ωe), that is, from a function space over Γ to
a function space over Ωi ∪Ωe, which adds one space dimension in the domain. However, at
the same time, the structure of the problem (1.1), which couples a parabolic equation on Γ
with an elliptic equation in Ωi ∪ Ωe, suggests that it is necessary to pass through Ωi ∪ Ωe
anyhow.

Remark 5. In the case of the example considered below, it is possible to express the problem
(1.1) on the manifold Γ by

(3.2) U̇ + ΛσU + S(U) = 0, U(0) = U0,

with U = (ui|Γ, ue|Γ),

Λσ =

(
Λσi

0
0 Λσe

)
and S(U) =

(
s(ui − ue)
−s(ui − ue)

)
,

where Λσi and Λσe denote appropriate Dirichlet-to-Neumann operators on Γ. When the
geometry is simple (that is, for example, when Ωi and Ωi ∪Ωe ∪ Γ are concentric balls) and
when the diffusion coefficients σi and σe are constant, these operators are easy to compute
(the first one admits in fact an explicit representation [20, Section 36.2]), and one might
solve the gradient system directly on Γ. However, such geometries seem not realistic for cells
and biological tissues. That is why we prefer to have a more general approach for solving
problem (1.1).

The existence and uniqueness for the problem (3.1) is well known, at least if the time
step h is small enough (h < 1

L is sufficient, where L is the Lipschitz constant of s), and
the sequence (zn)n is then well defined. Note that the variational Euler-Lagrange equation
corresponding to (3.1) is

(3.3)

∫
Ωi∪Ωe

σ∇ẑn+1∇v +

∫
Γ

s([ẑn+1]) [v] dσ +

∫
Γ

1

h
([ẑn+1]− zn) [v] dσ = 0.

Thus the algorithm reads as follows:

- Choose z0 (= u0,h), an approximation of the exact initial value u0.

- Given zn ∈ H 1
2 (Γ), compute ẑn+1, solution of (3.1) or, equivalently, (3.3).

- Set zn+1 := [ẑn+1].

Note that z0 is any element in the closure of j(V ) = H
1
2 (Γ), that is, z0 ∈ L2(Γ), and

after one iteration (zn)n remains in H
1
2 (Γ), the effective domain of EH . We emphasize

that the gradient structure of the system (3.1) allows one to use any optimization method
to solve the minimisation step. However, since the reference energy space H1(Ωi ∪ Ωe)
contains functions with a jump on the manifold Γ, a natural approach might be based on
an alternating algorithm of minimisation in the sub-domains. More precisely, the method
consists of a non overlapping Schwarz algorithm to solve the problem (3.3). For each time
step n, and given zn, we denote zn+1 by un+1

i − un+1
e and we drop the index n + 1 for
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simplicity. Then, we compute a sequence (uk)k in the following way: given uk, we solve

(3.4)


−∆uk+1

i = 0 in Ωi,

uk+1
i −uk

e−z
n

h + s((uk+1
i − uke)) + σi ∂niu

k+1
i = 0 on Γ,

ui = gi on ∂Ωi \ Γ

(3.5)


−∆uk+1

e = 0 in Ωe,

uk∗
i −u

k+1
e −zn
h + s((uk

∗

i − uk+1
e ))− σe ∂neu

k+1
e = 0 on Γ,

uk+1
e = ge on ∂Ωe \ Γ,

with k∗ = k or k∗ = k + 1. The existence of solutions for the sub-problems (3.4)-(3.5)
follows from the assumptions on s and the condition h < 1

L . The convergence of the Schwarz
algorithm with nonlinear transmission conditions is not obvious and is beyond the scope of
this paper. We emphasize that several choices on the coupling terms on Γ are possible, for
example nonlinear coupling terms which are both implicit for the interior and the exterior
domain, nonlinear coupling terms which are implicit in one of the domains, and nonlinear
coupling terms which are both explicit for the interior and the exterior domain.

A remark on a linear version of the algorithm. A variant of the Schwarz algorithm
consists in linearizing the transmission conditions. For this, we set s([u]) = a([u]) [u] (in
particular, we assume s(0) = 0, which is a reasonable assumption). Then we can rewrite
the internal sub-problem (3.4) as

(3.6)


−∆uk+1

i = 0, in Ωi,

uk+1
i −uk

e−z
n

h + a(uki − uke)(uk+1
i − uke) + σi ∂niu

k+1
i = 0 on Γ,

uk+1
i = gi on ∂Ωi \ Γ.

If we set ak := a(
[
uk
]
) = a(uki − uke) and

Bk(u) = (
1

h
+ ak)u,

then we may rewrite the nonlinear Schwarz algorithm as a linear implicit method of the
form

(3.7)


−∆uk+1

i = 0 in Ωi,

Bk(uk+1
i ) + σi ∂ni

uk+1
i = Bk(uke) + zn

h on Γ,

uk+1
i = gi on ∂Ωi \ Γ,

(3.8)


−∆uk+1

e = 0 in Ωe,

Bk(uk+1
e )− σe ∂ne

uk+1
e = Bk(uki ) + zn

h on Γ,

uk+1
e = ge on ∂Ωe \ Γ.
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For ε > 0, we set this Schwarz method under the form of the linear transmission Robin
condition

(3.9)


−∆uε,k+1

i = 0 in Ωi,

Bk(uε,k+1
i ) + σi ∂niu

k+1
i = Bk(uε,ke ) + ε∂neu

ε,k
e on Γ,

uk+1
i = gi on ∂Ωi \ Γ,

(3.10)


−∆uε,k+1

e = 0 in Ωe,

Bk(uε,k+1
e )− σe ∂neu

ε,k+1
e = Bk(uε,ki )− ε∂niu

ε,k
i on Γ,

uε,k+1
e = ge on ∂Ωe \ Γ.

Note that this is a slight generalization of the Schwarz method considered in [24, Theorem 1,
and the section V] and the convergence of this algorithm may be obtained following the same
lines. In particular, for general geometries and domain decompositions, or for non-convex
energies E , the linearization of the algorithm might be suitable.

Remark 6. The Schwarz method is not the unique possible choice to solve problem (3.3) (in
fact, see [18, 21] for a nonvariational approach based on finite differences), but it is a quite
natural approach. In fact, for many classical problems (for example, domain decomposition),
the Schwarz method is an elegant approach, although it may have some shortcomings such
as expansive cost or slow convergence. When it is used with the state-of-the-art scientific
computing methods (parallel programming, preconditioning), it becomes a very attractive
tool [14]. For the problem considered here, it is feasible even for more than one cell, for
example, a network of cells.

4. Numerics

In this section we consider three examples to test our approach. We emphasize that our
numerical simulations are presented as a proof of the concept rather than the results of an
optimized computing code for solving general problems of j-gradient type. In particular, we
do not choose the physical parameters for the model of electropermeabilization and do not
try to make any comparison with existing models. We show that a gradient based variational
discretisation allows one to reach high accuracy and to handle non trivial geometries in a
natural way, independently of the chosen nonlinearity. The two examples of non trivial
geometries at the end of this section serve to illustrate this theoretical point, but can not
be motivated by the physical model. In contrast to the well-posedness result which we
recalled in Section 2, the discretisation hereafter may be used even if the energy is time-
dependent. The computations are done on a laptop mac-pro i5 (2.5 GHz) with the open
source software FreeFem++ [15]. We use the nonlinear algorithm and the Schwarz iterations
are performed with the nonlinear optimization library IPopt [29]. The first example treats
a simple geometry of the cell and linear transmission conditions on Γ where actually an
analytic solution is available (see [18]); we may thus compare the analytical and the numerical
solution. The second and the third examples treat more complex transmission conditions at
the membrane Γ, namely a nonlinear, monotone transmission condition proposed by Kavian
et al. [18], and a condition associated with a double well potential. The two nonlinearities are
of a rather different nature and might serve as representatives of various other transmission
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conditions. The transmission condition chosen by Kavian et al. (that is, basically, s = tanh)
yields a globally Lipschitz continuous function, and allows one to obtain a smooth transition
at the membr ane; other functions with a similar qualitative behaviour, such as s = arctan,
may also be used for this purpose. The derivative of the double well potential is only locally
Lipschitz continuous, but can be used by applying Remark 4 (a). It generally yields a
sharper transition. Independently of any particular relevance for the electropermeabilization
problem, it is interesting to show that the j-subgradient theory works equally well for each
of these nonlinear laws, and this is our main motivation in choosing these two examples.

4.1. Example 1. In our first example we let 0 < R1 < R2 and put Ωi := B(0, R1),

Ωe := B(0, R2) \ B(0, R1), and Γ := ∂B(0, R1), that is, Ωi is the disk of radius R1, Ωe is a
concentric annulus with radii R1 and R2, and Γ is the circle of radius R1. We assume given
two constant conductivities, σi in Ωi and σe in Ωe, respectively, and a Dirichlet boundary
condition g = ER2 cos(θ) on ∂B(0, R2), where E is a given constant electrical field intensity.
The function s is assumed to be linear, that is, s(λ) = SL · λ, where SL is a constant. An
explicit solution for these data is given in [18] in polar coordinates, namely

u(r, θ) = (αe r + ber
−1) cos(θ) for (r, θ) ∈ [R1, R2]× [0, 2π] , and

u(r, θ) = αi r cos(θ) for (r, θ) ∈ [0, R1]× [0, 2π] ,

where, if we set A = 1
2 ( σi

SLR1
+ 1 + σi

σe
) and B = ( σi

SLR1
+ 1− σi

σe
),

αe = Aαi, βe = BαiR
2
1, αi =

E

(A+B(R1

R2
)2)

.

For the simulation we take σi = σe = 1 and R1 = 1, R2 = 2.
In Figure 4.1, we plot the convergence curve of the L2-error of the solution at the final

time T = 1, as a function of the space discretisation parameter hx in a log log scale and
a fixed time step h = 0.1. We use a P1 finite element approximation and we obtain the
expected rate of convergence. When one chooses SL large, then the linear transmission
condition enhances the continuity of u across the interface Γ and the solution is smooth.
This example, in which an explicit analytical solution is known, serves as a test example for
our algorithm.

We note that the algorithm converges very quickly in this example and the solution is ac-
curately computed, as formally expected from theoretical considerations. This supports that
the Schwarz method should converge even with nonlinear transmission conditions. More-
over, as we work in a variational setting, we may consider more general geometries and
boundary conditions without supplementary efforts.

Note that the convergence rate, in this example, decreases with SL whatever the mesh
size hx is and for a fixed time step h. This might be justified by the fact that when SL
decreases, the solution becomes more singular. In addition, for smaller SL, the time step
should be chosen small, too, to ensure the coerciveness of the energy. The numerical analysis
of this problem, as well as the convergence of the Schwartz algorithm remain open interesting
questions.

Remark 7. For the electropermeabilization problem, the dynamical transmission condition
is

Cm∂t[u] + sm([u])− σe∂ne
ue = 0 on Γ,
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Figure 1. Convergence curve for the L2 error in log log scale. SL = 108,
rate of convergence 1.97

where σi is the internal constant conductivity (a typical value is 0.455 S/m) and Cm is
the capacitance (a typical value is 9.510−3 F/m2 [26]). We have not taken exactly these
values in this example, because we are only interested in the qualitative behaviour of the
system. Nevertheless, the large difference between SL and SR allows for an optimal rate of
convergence of the algorithm.

4.2. Example 2. In the second example, we choose Ωi, Ωe and Γ as in the example 1, and
we consider the nonlinear function s to be the derivative of a double well potential with
equilibrium points SL < Sa < SR, that is,

s(t) = ε2Am (t− SL)(t− Sa)(t− SR),

with ε > 0, Am ≥ 0. We assume that Sa <
SL+SR

2 . This is a particular example for a more
general choice of functions satisfying

s′(SR) > 0, s′(Sa) < 0, s′(SL) > 0,

for which SR and SL are the stable equilibria, and Sa is unstable.
The choice of this nonlinearity obeys mainly to mathematical considerations rather than

a physiological description of the electropermeabilization model. We note, however, that
the double well potential is usually used to model electrical cell activity (as a simplifica-
tion of the FitzHugh-Nagumo equations) and ionic currents. Thus, this choice might have
potential applications to model an electroporation current; we refer the reader to the inter-
esting discussion in Kavian et al. [18] and Leguèbe et al. [21] about electroporation versus
electropermeabilization.

In this example we consider the same boundary conditions as in the first example and a
zero initial condition. In Figures 2(a)-2(f) we plot the solution u = (ui, ue) at times T = 0.5
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IsoValue
-504.83
-432.641
-384.515
-336.389
-288.263
-240.136
-192.01
-143.884
-95.7579
-47.6317
0.494437
48.6206
96.7468
144.873
192.999
241.125
289.251
337.378
385.504
505.819

(a) The solution in Ωi

IsoValue
-469.413
-402.256
-357.485
-312.714
-267.943
-223.172
-178.401
-133.63
-88.8594
-44.0885
0.682518
45.4535
90.2245
134.995
179.766
224.537
269.308
314.079
358.85
470.778

(b) The solution in Ωe

IsoValue
-504.83
-432.641
-384.515
-336.389
-288.263
-240.136
-192.01
-143.884
-95.7579
-47.6317
0.494437
48.6206
96.7468
144.873
192.999
241.125
289.251
337.378
385.504
505.819

(c) Solution in Ω

IsoValue
-956.179
-819.56
-728.481
-637.402
-546.323
-455.244
-364.165
-273.086
-182.007
-90.9279
0.151089
91.2301
182.309
273.388
364.467
455.546
546.625
637.704
728.783
956.481

(d) Solution in Ωi

IsoValue
-768.801
-658.958
-585.73
-512.501
-439.272
-366.044
-292.815
-219.586
-146.358
-73.1288
0.0998774
73.3286
146.557
219.786
293.015
366.243
439.472
512.701
585.929
769.001

(e) Solution in Ωe

IsoValue
-956.179
-819.56
-728.481
-637.402
-546.323
-455.244
-364.165
-273.086
-182.007
-90.9279
0.151089
91.2301
182.309
273.388
364.467
455.546
546.625
637.704
728.783
956.481

(f) Solution in Ω

Figure 2. Computed solution (ui, ue) in Example 2 at T = 0.5 and T = 1.

and T = 1.0. The time step is 0.05 and the mesh size hx = 0.07. In this example, we
have set SL = 1.9, SR = 102, Sa = 10, Am = 1 and ε = 10−3. Note that the colormap is
calculated for each single image so that the colormap for the solution in the entire domain
Ωi ∪ Ωe does not necessarily appear to be the sum of the colormaps of the two images in
each sub-domain (compare, for example, 2(d), 2(e), and 2(f)).

Remark 8. Note that as we may expect the solutions to be very smooth except in a neigh-
borhood of Γ, we may use different meshes on Ωi and Ωe and refine the meshes close to Γ
(see example 3).

4.3. Example 3. In the third example, we take the function s which has been considered
in Kavian et al. [18]. It is the globally monotone function

s(t) = SL +
(SR − SL)

2
(1 + tanh(Ke (|t| − Vr))),

where Vr, Ke, SL, SR are given constants. To make the problem differentiable, we replace |t|
by
√
t2 + ε2. We consider the same boundary condition on ∂Ω and a zero initial condition,

like in example 2. In Figures 3(a)-3(f), we plot the solution u = (ui, ue) at times T = 0.5
and T = 1. The time step is 0.05 and the mesh size hx = 0.07. We take the constants
Ke = 10, SL = 1.9, SR = 102, Vr = 2.9, and E = 1.

Remark 9. The numerical results with two different nonlinearities S are in this example
qualitatively quite similar, since the two functions ensure a transmission/transition from
the left state characterized by the potential SL to the right state SR. The main difference
is the smoothness of the transition from the left to the right. Note also the role of the
constants Vr and Ke on the profile of this transition for the example 3, which has no
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IsoValue
-10.2714
-8.17217
-6.77267
-5.37317
-3.97367
-2.57417
-1.17468
0.224822
1.62432
3.02382
4.42332
5.82282
7.22231
8.62181
10.0213
11.4208
12.8203
14.2198
15.6193
19.1181

(a) Solution in Ωi

IsoValue
-12.2041
-10.2226
-8.9016
-7.58062
-6.25963
-4.93865
-3.61766
-2.29668
-0.975695
0.345289
1.66627
2.98726
4.30824
5.62923
6.95021
8.27119
9.59218
10.9132
12.2341
15.5366

(b) Solution in Ωe

IsoValue
-12.3884
-10.1304
-8.62505
-7.1197
-5.61435
-4.10901
-2.60366
-1.09831
0.40704
1.91239
3.41774
4.92309
6.42844
7.93378
9.43913
10.9445
12.4498
13.9552
15.4605
19.2239

(c) Solution in Ω

IsoValue
-62.8934
-51.7867
-44.3823
-36.9778
-29.5733
-22.1689
-14.7644
-7.35994
0.0445261
7.44899
14.8535
22.2579
29.6624
37.0669
44.4713
51.8758
59.2802
66.6847
74.0892
92.6003

(d) Solution in Ωi

IsoValue
-31.6881
-26.0064
-22.2186
-18.4309
-14.6431
-10.8553
-7.0675
-3.27971
0.508074
4.29586
8.08365
11.8714
15.6592
19.447
23.2348
27.0226
30.8104
34.5982
38.3859
47.8554

(e) Solution in Ωe

IsoValue
-62.8934
-51.7867
-44.3823
-36.9778
-29.5733
-22.1689
-14.7644
-7.35994
0.0445261
7.44899
14.8535
22.2579
29.6624
37.0669
44.4713
51.8758
59.2802
66.6847
74.0892
92.6003

(f) Solution in Ω

Figure 3. Computed solution (ui, ue) in Example 3 at T = 0.5 and T = 1

counterpart in the example 2 even if ε tends to sharpen the profile. We emphasize that
our main concern in this article is the possibility of using several kind of nonlinearities,
geometries etc. in the framework of the j-gradient theory and not to validate any choice of
the electropermeabilization model.

We end this numerical section by considering the data in a range close to the physical
parameters, namely Ke = 10,SL = 1.9, SR = 106, Vr = 1.5, and E = 4. The results are
plotted in Figures 4(a)-4(c) at time T = 0.5. One may observe that high and fast variations
of the electrical potential are located close to Γ.

IsoValue
-37.8979
-35.0913
-33.2202
-31.3491
-29.478
-27.607
-25.7359
-23.8648
-21.9937
-20.1226
-18.2516
-16.3805
-14.5094
-12.6383
-10.7672
-8.89615
-7.02507
-5.15399
-3.28291
1.39479

(a) Solution ui, T = 0.5

IsoValue
-20.1153
-17.2622
-15.3601
-13.458
-11.556
-9.65392
-7.75185
-5.84979
-3.94773
-2.04566
-0.143596
1.75847
3.66053
5.5626
7.46466
9.36673
11.2688
13.1709
15.0729
19.8281

(b) Solution ue, T = 0.5

IsoValue
-38.8664
-34.607
-31.7674
-28.9278
-26.0881
-23.2485
-20.4089
-17.5693
-14.7296
-11.89
-9.0504
-6.21077
-3.37115
-0.531528
2.30809
5.14772
7.98734
10.827
13.6666
20.7656

(c) Solution u, T = 0.5

Figure 4. Solution in Example 3 with nearly physical parameters

The last results correspond to the example 3 in the sense that we take the same non-
linearity s as in example 3, but for different geometries. We have set Ke = 10, SL = 1.9,
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SR = 103, Vr = 2.01, and E = 1. It is interesting to note how the shape of Γ changes the
solution, namely both the profile and the magnitude.

(a) Cassini egg mesh

IsoValue
-200.801
-172.228
-153.18
-134.132
-115.083
-96.0348
-76.9864
-57.938
-38.8896
-19.8412
-0.792826
18.2556
37.304
56.3524
75.4008
94.4491
113.498
132.546
151.594
199.215

(b) Solution in Ω

IsoValue
-120.094
-102.995
-91.5958
-80.1963
-68.7968
-57.3974
-45.9979
-34.5984
-23.199
-11.7995
-0.400023
10.9994
22.3989
33.7984
45.1979
56.5973
67.9968
79.3963
90.7957
119.294

(c) the solution ue

IsoValue
-200.801
-172.228
-153.18
-134.132
-115.083
-96.0348
-76.9864
-57.938
-38.8896
-19.8412
-0.792826
18.2556
37.304
56.3524
75.4008
94.4491
113.498
132.546
151.594
199.215

(d) the solution ui

Figure 5. Example 3 on the Cassini egg shape

(a) Snale mesh

IsoValue
-206.178
-191.645
-181.957
-172.268
-162.58
-152.892
-143.204
-133.515
-123.827
-114.139
-104.45
-94.762
-85.0737
-75.3853
-65.697
-56.0087
-46.3204
-36.6321
-26.9438
-2.723

(b) Solution in Ω

IsoValue
-129.308
-120.541
-114.696
-108.851
-103.006
-97.1612
-91.3164
-85.4716
-79.6268
-73.7819
-67.9371
-62.0923
-56.2475
-50.4027
-44.5578
-38.713
-32.8682
-27.0234
-21.1785
-6.56649

(c) the solution ui at T = 0.025

IsoValue
-205.818
-191.825
-182.496
-173.167
-163.837
-154.508
-145.179
-135.85
-126.521
-117.192
-107.863
-98.5339
-89.2048
-79.8757
-70.5466
-61.2175
-51.8885
-42.5594
-33.2303
-9.90758

(d) the solution ue at T = 0.025

Figure 6. Example 3 on a snale cell
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