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EXISTENCE THEOREM FOR A NONLINEAR ELLIPTIC SHELL
MODEL

RENATA BUNOIU, PHILIPPE G. CIARLET, AND CRISTINEL MARDARE

ABSTRACT. In this paper we introduce a new nonlinear shell model with the following
properties. First, we show that, if the middle surface of the undeformed shell is elliptic,
then this new nonlinear shell model possesses solutions which are also elliptic surfaces.
Second, we show that, if in addition the middle surface of the undeformed shell is a
portion of a sphere, then the total energy of this nonlinear shell model coincides to
within the first order, i.e., for “small enough” change of metric and change of curvature
tensors, with the total energy of the well-known Koiter nonlinear shell model.

1. INTRODUCTION

A fundamental existence theorem that applies to a large class of models in three-dimen-
sional nonlinear elasticity was established in a landmark paper [1] by J. Ball. By contrast,
no existence theorem is as yet available for any nonlinear shell model that combines the
“membrane effects” and the “flexural effects” that may classically arise in a deformed shell
(except in the very special case of nonlinearly elastic “shallow shells”; cf., e.g., [5] and the
references quoted therein).

This paper aims at achieving this objective in the particular case where the middle surface
of the shell is elliptic. Specifically, our main result (Theorem 5) establishes the existence
of a solution to a nonlinear shell model in this particular case. More specifically, we show
that the unknown deformation % : w — R? of the middle surface S := () of the reference
configuration of a shell is a minimizer, over a specific set U (w) of admissible deformations,
of a functional J : U(w) — R of the form

Tl i= [ EWhile) + Wil Vady - Lig) for all p € U(w),

where 2¢ > 0 denotes the thickness of the shell, \/ady denotes the area element along S,
and L denotes a linear form that takes into account the applied forces.

The integrands W}f/[ [] and Wf,ﬂ [] appearing in the above expression of J[¢] respectively
model the “membrane effects” and the “flexural effects” that arise in the deformed shell (the
middle surface of which is ¢(w)). These integrands are defined explicitly in terms of the
fundamental forms of the surface ¢(w) by means of specific stored energy functions W,
and Wy (see Theorems 2 and 3) that are polyconver and orientation-preserving in a sense
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specified in Section 4. Besides, we prove in Theorem 4(b) that, if S is a portion of a sphere,
then the integrand

Wiilel + " Wilg]
appearing in the above definition of J[g] coincide for “small enough” change of metric and
change of curvature tensors with the integrand

3

€ apoT € apoT
7@ ? Gor(¢)Gaplp) + G 7 Ror (@) Rap()

appearing in the definition of the total energy of the well-known Koiter nonlinear shell model
(see Section 3).

2. PRELIMINARIES

This section gathers the notions about the differential geometry of surfaces in R3 that
will be used throughout the paper. For more details on these notions, we refer the reader
to, e.g., [3].

Greek indices and exponents range in the set {1,2}, Latin indices and exponents range
in the set {1,2,3} (save when they are used for indexing sequences), and the summation
convention with respect to repeated indices and exponents is used.

The Euclidean norm, the inner product, and the vector product, of vectors in R?® are
respectively denoted |a|, a-b, and a Ab. The set of all 2 x 2 real positive-definite symmetric
matrices is denoted S2.

A domain in R? is a bounded, connected, open subset w C R? with a Lipschitz-continuous
boundary v := Odw, the set w being locally on the same side of 4. A generic point in the
set w is denoted y = (y,) and partial derivatives, in the classical or distributional sense, are
denoted 0, := 0/0yq and 0np = 82/3ya5‘y5.

A mapping ¢ € C?(w;R3) is an immersion if it satisfies 91 (y) A d2p(y) # 0 at each
point y € w.

Throughout this paper, the middle surface of the reference configuration of a nonlinearly
elastic shell is denoted and defined by S = 0(w), where 8 € C?(w;R3) is a given immersion.
The two vectors

aq(y) = 0.0(y)

are then linearly independent at all points y € @ and span the tangent plane to the surface

S, and the vector field

a; N\ as

as: € Cl(w;R?)

o \al /\a2|

is a unit normal vector field along the surface S. For each y € @, the three vectors a;(y)
form a basis in R3; its dual basis is denoted and defined by

a'(y) - a;(y) = o,
where (5; is the Kronecker symbol. The area element along S is y/a dy, where
a = det (anp) = |ai A az|*.

The covariant and contravariant components a,s and a®? of the first fundamental form,
or metric tensor, of S, the covariant and mixed components b,z and b2 of the second
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fundamental form of S, and the covariant components c,g of the third fundamental form of
S, are then defined by letting:

(aB = Qq - g, a®® :=a” - ad”’,

bag := 0qap - a3 = —ag - Oaas, bﬁ = aﬁgbm,
Cap = blbop = Onas - Ozas.

The notation L?(w;R3) denotes the space of vector fields &€ = (§;) : w — R? with compo-
nents &; in the usual Lebesgue space L?(w). It is equipped with the norm

/
l€llso = ( [ 16@)Pdy)" tor any € € L2(i ),

where |€(y)| denotes the Euclidean norm of the vector £(y) € R? (as already mentioned
before).

Likewise, the notation H!(w;R3) denotes the space of vector fields & = (£;) : w — R3
with components &; in the usual Sobolev space H!(w). It is equipped with the norm

2 . 2 1/2 1 3
€y = (161320 + D 10uEl3a ) for any € € H' (w; R).
a=1
Strong and weak convergences are respectively denoted — and —.

3. KOITER’S NONLINEAR SHELL MODEL

We consider a shell made of a homogeneous and isotropic hyperelastic material, whose
reference configuration is a natural state; hence the constituting material of the shell is
characterized by its two Lamé constants A > 0 and p > 0. The reference configuration of
the shell is the set

{0(y) + z3a3(y); y €w, —e < x5 <&},
defined in terms of a surface S = 8(w) C R? and a parameter € > 0.

A deformation of the middle surface of the shell is a smooth enough mapping ¢ : w — R3.

Koiter’s nonlinear shell model, introduced by Koiter [8] in 1966, is one of the most com-
monly used two-dimensional nonlinear shell models in computational mechanics. It states
that the unknown deformation v : w — R3 of the middle surface S = @(w) of the shell sub-
jected to applied forces should minimize a functional, called the total energy of the deformed
shell, over an appropriate set of admissible deformations, both of which we now define.

Given an arbitrary deformation ¢ : w — R? of the surface S = 6(w) with smooth enough
components, the functions

105 (9) = a0 (@) - as(@), where aq(p) = dup,

denote the covariant components of the first fundamental form of the deformed surface p(w),
and the functions

Gas() = 3(aas($) — aap)

denote the covariant components of the change of metric tensor field associated with the
deformation ¢ of S. The area element along the surface p(w) C R? is y/a(p) dy, where

a(ip) = det (aas (1)) = |a1 () A a2(<P)I2-
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If the two vectors a, () are linearly independent at all points of w, then the vector field

_ a1(p) Nax(yp)
as(p) :=
|a1(p) A as(p)|
is well-defined and defines a unit normal vector field to the deformed surface ¢(w), the
functions a®?(¢) defined by

(@*(¢)) = (aap()) "
denote the contravariant components of the first fundamental form of the deformed surface

@(w), the functions

bap(p) = Dapep - as(p) = —Oatp - Opas(p)
denote the covariant components of the second fundamental form of the deformed surface
p(w), the functions

Rap(@) := bap(p) = bap
denote the covariant components of the change of curvature tensor field associated with the
deformation ¢ of S, the functions
cap(p) == Oaas(p) - Opas(p) = bas(¢)a’" (¢)brs(¥)
denote the covariant components of the third fundamental form tensor field of the deformed
surface ¢p(w), and the functions

Paplp) 1= 5(cas(p) — cas)

denote the covariant components of the change of third fundamental form associated with
the deformation ¢ of S. The area element along the surface (a3(¢))(w) C R3 is \/c(¢) dy,
where

() == det (cap(ep)).
Note that

where

K(p) = det (bap())/det (aap(#))
denotes the total curvature of the surface ¢(w), and that

daz(p) N daz(p) = K(p)(ai(p) Aaz(p))
= K(p)Va(p) as(e).

The last relation implies in particular that

(Dras(p) A Daasz(p)) - as(p) = K(p)valp).

The unknown 1 : w — R? appearing in Koiter’s nonlinear shell model represents the
position vector field of the unknown deformed middle surface ¥(w) of the shell, and as such
is assumed to satisfy a boundary condition of the form

¥ = 0 and a3(¢) = a3 on 7,

where 7o is a non-empty relatively open subset of 7 := Jw, which means that the shell is
assumed to be clamped on 6(7p). In addition, the unknown ) is subjected to the constraint

(91'(p/\82’¢ 7é 0 in w,

S0 as to insure that the tangent plane is well defined at each point of the deformed surface.



EXISTENCE THEOREM FOR A NONLINEAR ELLIPTIC SHELL MODEL 35

Taking appropriate a priori assumptions into account, W.T. Koiter concludes that the
unknown deformation 4 of the middle surface S = 6(w) of the shell should be a minimizer,
over a set of smooth enough vector fields ¢ : w — R? satisfying the boundary conditions

¢ =6 and a3(p) = az on 7y,

of the total energy of the deformed surface ¢(w), denoted and defined by

3
Txle] = / {50777 Cor(9)Gas(0) + =a™ " Ror () Ras() }vady — Li),

where the functions

A\
aaBoT — 7aozﬂao7' 2 aaaaﬁr aaraﬁa
A+ 2p + 2 * )
are the contravariant components of the (uniformly positive-definite) elasticity tensor of the
shell, A > 0 and p > 0 are the Lamé constants of the constitutive material, and L is a linear
functional that takes into account the applied forces.
€
The integral 5/ a®PoT Gy (p)Gap(p)Vady is called the membrane part of Koiter’s en-

w
3

ergy, while the integral % / aO‘B”TRM(cp)Raﬁ(go)\/Edy is called the flexural part of Koiter’s

energy.

4. POLYCONVEX AND ORIENTATION-PRESERVING STORED ENERGY FUNCTIONS DEFINED
ON A SURFACE

The notion of polyconvexity has been introduced by Ball [1] in three-dimensional elas-
ticity in order to establish an existence theorem for the minimization problem of nonlinear
elasticity. It has been subsequently generalized to a class of more general functionals in [2],
and has been adapted in [4] to “orientation-preserving” functionals, whose argument is a
pair of vector fields defined on a surface, representing the deformation of the middle surface
of a shell and the rotated unit normal vector field along the deformed middle surface. In
this paper we adapt the definition of polyconvexity on a surface of [4] to a class of func-
tionals that are “orientation-preserving” and whose argument is a single vector field defined
on a surface (like Koiter’s energy defined in Section 3), representing the deformation of the
middle surface of a shell.

Let w be a domain in R? and let

E, = {(q,us) € R® x (R®)?; (u; Aus)-q >0},

D, = {(q,ua, €) € R® x (R*)* x R%; e-q >0},

D, (q) = {(ua,e) € (R*)? x R? e-q > 0} for each q € R® with q # 0.
Note that the set Dy (q) is conver for each g € R? with q # 0.

A stored energy function W : w x E; — R is said to be orientation-preserving if, for
almost all y € w,

W(y,q,us) — 00 if (q,u,) € Ey satisfies (u; Aug)-q— 0T,
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An orientation-preserving stored energy function W : w x E; — R is said to be poly-
convex if there exists a function W : w x D, — R with the following properties:

Wy, q,us) = W(y, q,uq,us Ausg) for a.e. y € w and for all (q,us) € E,
W(y,q,-): Dy(q) — Ris convex for a.e. y € w and for all ¢ € R® with q # 0,
W(y,-) : DL — R is continuous for a.e. y € w,

W(-,q,uq,€e): w— R is measurable for all (q,uq,e) € D.

These notions of polyconvexity and orientation-preserving will be used in Section 8 to
prove the existence of solution to a new nonlinear shell model, defined in Section 7 by
replacing in Koiter’s model the stored energy function. To do this, we will need in addition
a theorem due to Ball, Currie & Olver [2, Theorem 5.4], recorded here with our notation for
reader’s convenience.

Theorem 1. Let W : w x R? x R? — R U {+oc0} satisfy the following properties:
W(-,q,F):w— RU{+0c0} is measurable for every (q, F) € R* x R?,
W(y,-,-) : R* x R = RU {+o0} is continuous for almost all y € w,
W(y,q,) : R = RU{+00} is convez for almost all y € w and all g € R3.

Letn, :w—R3 neN, and n:w — R3 be measurable functions such that m,, — n a.e.
inw asn — oo, and let F,, € LY (w;RY) and F € L*(w;R®) such that F,, — F in L'(w;RY)
as n — oo. Suppose further that there exists a function g € L'(w) such that

W(y,n,(y), Fn(y)) = 9(y) and W(y,n(y), F(y)) = 9(y)

for alln € N and almost all y € Q. Then

/W(y,n(y),F(y))dySlirlrg{gf/W(y,nn(y),Fn(y))dy

w

5. A POLYCONVEX AND ORIENTATION-PRESERVING STORED ENERGY FUNCTION OF
MEMBRANE TYPE

In this section we define a polyconvex and orientation-preserving stored energy function
WJL that coincides to within the first order with the membrane part of Koiter’s energy. To
begin with, we need to establish the following preliminary result:

Lemma 1. Given any mapping ¢ € C*(w;R?), the following relations hold in w:
a*Paqp(p) =2+ 207 Gap(ep),
070 1y ()05 (19) = 2+ 407 G (1) + 40770 Gl () Clor (),
and
a(@)/a = 1+ 20 Cas(9) + 207 Gap(9))? — 2077077 G (1) Gisr (),
log (a(p)/a) = 2a*"Gap(p) — 207 0" Gap(0)Gor () + o(|G(#)|),

where
IG(@)|I* = a*P a7 Gao(0)Gar ().
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Proof. The first two relations are easily deduced from the definition of the functions G.(¢p),
which implies that

a08(P) = aap + 2Gas(p) in w.
The third relation is deduced from the identity

a(p) = det (ang(p)) = det (aap + 2Gap(p))
—a [1 +2a°PG g () + 4 det (awaaﬁ(cp))],

and from the Cayley-Hamilton theorem applied to the matrix field with components G§(¢) :=
a®*°G4p(p), which shows that

GH(p)Galp) — (Gale))® + 2det (G (¢)) = 0,
or equivalently, that
2det (G5(9)) = (a°°Gas(9))? — a°%a”" Gaw (19) G ().
O

Theorem 2. Given any immersion @ € C*(w;R?) and any two constants \x > 0 and p1, > 0,
define the function

N R RPN RN CL)

for all p € H'(w;R3) that satisfy O1¢p A Dap # 0 a.e. in w.
Then there exists a polyconvex and orientation-preserving function Wy : w x Ex — R
(see Section 4) such that

Wi le] = War (-, as(), datp) ace. in w,

for all p € HY(w;R3) that satisfy O1¢p A Dap # 0 a.e. in w.
Besides, for each ¢ € C(w;R3),

Wislel = a2’ Gor(9)Gasle) + oG (9)|*) in w,
where
a(:ﬁm— = 2)\*ao¢,8ao7' + M*(aaaaﬂT + aara,ﬁo).
Proof. Let (cf. Section 4)
Ey = {(q,us) € (R (w1 Aus)-q >0},
D+ = {(qvuave) € (R3)4’ e-q> 0}7
D, (q) := {(uq,€) € (R*)3; e-q > 0} for each q € R?® with q # 0.
Define the function Wy : w x Dy — R by letting, for each y € w and each (g, u,,€e) € D4,
L2
(e-q)” 1}
a(y)

War (Y, @, e, €) := pis [ao‘ﬁ(y)ua “ug — 2} + /\*[

— (A + ps) log <(Z'(;)>2),

and the function Wy, : w x E; — R by letting, for each y € w and each (q,u,) € E4,
Wi (Y, @, %a) == War(y, g, ta, w1 A us).
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Since the matrix (a®?(y)) is symmetric and positive-definite at each y € @, the mapping
3 3 af 1/2
(ue) € R® x R? = (a®(y)uq -ug) '~ €R

is a norm over the space R3xR3. Together with the convexity of the functionst € R — t> € R
and t € (0,00) — —logt € R, this property implies that, for each y € w and each g # 0,
the mapping Wy (y,q,-) : Dy(g) — R is convex. Besides, the mapping Wy, : w x Dy — R
is continuous and satisfies

W (Y, @, ta, ) = 00 if (y,q,uq,€) € w x Dy with e-q — 07,

Hence the function Wy, : w x E; — R is polyconvex and orientation-preserving in the sense
of Section 4.

The relations a. (@) - ag(®) = aas(p) and (a1(p) A az(p)) - as(e) = v/a(e) show that,
for each ¢ € H'(w;R3) such that 91 A dap # 0 a.e. in w,

Wil = War (-, as(), aa(9)) = Wy (- as(9), aa (i), ar () A az(p)) ae. in w.

This completes the proof of the first part of the theorem.
It remains to prove that WI%/I (o] depends on ¢ only by means of G,3(¢p), then to identify
the first order term of W}z/[ [p] with respect to Gap(p). Let for brevity

Gop = Gup(p) and |G| := " Ge Gp-.
Using the Taylor expansions of Lemma 1 in the definition of Wﬁl [¢], we deduce that

Whle] = s [0 a0s(e) =2 + A [%SD) ~1] = (A + 1) og (%80))

= 2, aO‘BGa/g 4+ 2. [aaBGalg + (aa’gGag)2 — aa’Ba‘”GwG&}
=20\ + 1) [4°7 Gy — 0707 G Gy | + oI G)

= 2 (4™ Cap)? + 241 P07 G0 Gy + o | G?)

= a2%7TGorGag + o(|G?).

Remark. The definition of the function W}& can be replaced in Theorem 2 by the following
more general expression:

While] = C1 [0°00 a0 (9)aas(@)] +Ca [0 aas(0)]

+[M )" e [MP)] g,

a

for appropriate choices (of which there exist infinitely many) of the constants Cy > 0 and
pr > 1.
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6. A POLYCONVEX AND ORIENTATION-PRESERVING STORED ENERGY FUNCTION OF
FLEXURAL TYPE

We define in this section a polyconvex and orientation-preserving stored energy function
“of flexural type” in the particular case where the middle surface S = 0(@) of the shell is
elliptic, in contrast with the previous section where no such restriction was needed. This
assumption is needed here to ensure that the third fundamental form of .S is positive-definite
at each point of @.

More specifically, we assume in this section that the immersion 8 € C?(w; R?) satisfies

(bap(y)) € S2 for every y € @,

where bog := 0,80 - a3 denote the covariant components of the second fundamental form of
S = 0(w) (see Section 2). This assumption implies that the covariant components c,g =
Onas - Opaz € C1(w) of the third fundamental form of S also satisfy

(cap(y)) € S2 for every y € @.

For each y € @, let (b*(y)) S%, resp. (¢*P(y)) € S2, denotf? the inverse matrix of
the matrix (bap(y)) € S2, resp. (cap(y)) € S2. Note that ¢*# := b*?a,,b™" and that the
functions b*? and ¢*? are distinct from the contravariant components

b = a*b,.a™ and ¢*? = a®c,.a™?

of the second and third fundamental forms of S = 0(w).
To begin with, we show how the tensor field P,g(yp) can be expressed in terms of the
tensor fields Gop(p) and Ras(¢p) (these tensor fields are defined in Section 3).

Lemma 2. Let
U’ @) = {@ € CHw;R®); d1p A Dop # 0 in @, as(p) € CH(w; R?)}.

Then the following relation holds in w for every ¢ € Ub(w) that is sufficiently close in the
CY(@)-norm to the immersion 6 € C?(w;R3):

1
Paﬁ(‘P) = —beEGUT(SO) + 5 bgRoB(@) + bgRao(So) + aGTR(xa(‘P)RTB(SD)]
+ 263053077 G () Gsr (p) — a7 G () |3 Rir () + bng(cp)}
+o(|G()|I* + | R(¢)[1*)-

Proof. Using the power series expansion of the inverse of a matrix of the form (I + A)~1!,
where I denotes the identity matrix and ||A|| < 1 for some subordinate matrix norm (this
is where the assumption that ¢ be sufficiently close to 6 in the C!(w)-norm is used), in the
identity
aaﬁ(‘P) = aaa(ég + 2aaTGTﬁ(‘P))a
we first deduce that
a*P(p) = a®’ = 2G°P (),
where R
G () = a®a" Gor () — 20707 a7 G () Gur () + ol |G 9)]).

Using these relations and the relation

bas(p) = bap + Rap(p)
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in the right-hand side of the relation

1 1

Paﬁ(so) = i(caﬁ@P) - Caﬁ) = i(aaT(‘P)bao(So)bTﬂ(So) - aUTbaobTﬁ)a

we then deduce, after a series of straightforward calculations, that (for simplicity we omit
the dependence on ¢ of the functions Pyg, Gag, and Rag, appearing in the formula below)

P.g = —baoameaV‘;bw + %(baga”Rfﬁ + Rooa’"br3 + Rooa® Rrp)
+ 2baaa”Gma76Gwa””bUﬂ - Rwa”Gmawbw - bwa”Gmav‘st
+o(|G|* + | RI?).
O

Theorem 3. Given any immersion 6 € C%(w; R?) such that the surface S = () is elliptic
and given any two constants Ay > 0 and ji, > 0, let

Whig] = K[/l* (éaﬁcag(go) - 2) A (Lf) - 1) — (A + f1n) log (@)}
for each @ € U*(w), where
Uﬁ(w) = {p € H' (w;R3); d1pAdap # 0 ae. in w,
az(p) € H (w;R?), K(p) >0 a.e. in w},

and
K@) = o
¥ 010 A 02|
(a) Then there exists a polyconvex and orientation-preserving function Wg : w xEy — R
(see Section 4) such that, for each ¢ € U*(w),

(01a3(p) A O2a3(p)) - as(e) and K := K(0).

Whig] = We(-, as(p), daas(p)) ae. in w.
Besides, for each ¢ € U’(@) (the set U’ (w) is defined in Lemma 2),
WEle] = &7 Por (@) Pas() + o | P(9)]*)
= 2% Ror () Rap () + o(|R(#)IIP) + OIG () [(IG(9) | + [ R()])),

where
bePoT = K [2X*3a%ﬂ+%(BO‘UBWMMEBUH%(éa"ﬁ%é“aﬁ%awémﬂL améﬁg)} ’
¢ = K[ 20006 4 (0760 4 6770
(b) If the surface S = 0(@) is a portion of a sphere, then, for each ¢ € U’ (@),

WElp] = 2% Ror (9) Ras(#) + o(|R(#) %) + OUIG(2)I(IG ()| + | R(9)]1)),
where

&Sﬁm— — 25\*a(1[3a0'7' + ﬂ*(a(xaaﬁT + aara,ﬁ’o).
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Proof. Define the function Wg : wx Dy — R by letting, for each y € w and each (q, v, f) €
Dy,

(f 97 _1)

Wiy, 4,00, f) 1= K [ (67 ()0e 05 = 2) + 4 o(y)

- O+ tog ((L00))

and define the function Wr : w x E; — R by letting, for each y € w and each (g,v,) € E4,

We(y, q,va) := Wr(y,q,va,v1 Av2).

Since the functions c,g coincide with the covariant components of the first fundamental
form of the surface a3z(w) C R? (a3 : @ — R3 is an immersion since the surface S = 6(w) is
elliptic), and since K > 0 in @, Theorem 2 shows that W is polyconvex and orientation-
preserving (these notions have been defined in Section 4), that

Whlgl = WE(, a3(¢), daas(0)) = Wr (-, as(p), daas(), d1as(p) A deas(¢))
for all ¢ € U*(w), and that
Whlp] = &%77 P, () Pag() + o(| P(¢)||?)

for all ¢ € U’ (@).

It remains to identify the first order term of Wf; [p] with respect to Gop(p) and Ras(p).
By replacing the functions P, (¢) and P,s(¢) appearing in the above formula by their
expressions given in Lemma 2, viz. (for simplicity, we omit in this proof the dependence on
 of the functions Png, Gag, and R.g),

1
Pap = =bbGas + 5 [baRys + b} Ras + a7 Ras Rig|
+ 2038503 GGy — A Gop B2 Ry + B R | + oG + | BRI,
1
Py = 030G+ 5 [bQRM L0 Ry + aA"RgARW]
20 Gy Gy — 0 Gy By By + VLR | + (G2 + | B?),
we first deduce that
WEle] = &7 0 b Gaubl b3 G
1 1
— SEPTREG (V2R + B} R | Seei (63 Rar + 02 R [ 0205 G

1
8P 03 Rar + 02 Ron] [V3Rys + b3 Ran] + oIGI + | RJ2),
This in turn implies that
1
W}ﬁ?[sp} = Zéfﬁd‘r {bgR/\T + bf—\Ra)\] [bz{Rfyg + bgRa'y]
+O(IGI1* + |GIIR) + o(IR|I*)
1
= @0 + TGS + PN + V| Ry R

+O(IGI1* + [GIIR]) + o(IR]*).
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Then the conclusion follows by noting that
le [c’y,@)w—boba a'y)n'babﬁ C’yBaAbabT a’yokbﬂbT — 62(607—.
In the particular case where S = 0(w) is a portion of a sphere, the mean curvature H

and the total curvature K of the surface S are related by K = H?. Consequently, the
Cayley-Hamilton theorem implies that

(baa - Ha(w)a”(bTﬁ - HCL.,-/@) = baaaUTbTﬁ - 2Hba,g + Kaa[g =0,
which in turn implies that
bag = Haag, cap = Kaag, b = (1/H)aaﬁ, &P = (1/K)aaﬁ
Since K = H?, it follows that

bizﬂo’T _ &ixﬁa‘r'
This completes the proof. ([l
7. A POLYCONVEX AND ORIENTATION-PRESERVING STORED ENERGY FUNCTION OF
KOITER’S TYPE

By combining the results of the previous two sections, we are now able to define a poly-
convex and orientation-preserving stored energy function Wf( [¢] that has in addition the
property that, when the middle surface of the undeformed shell is a portion of a sphere,
its leading term with respect to the change of metric and change of curvature tensors is
precisely Koiter’s stored energy function.

Theorem 4. (a) Given any immersion 6 € C*(w;R3) such that the surface S = (W) is
elliptic, define for each € > 0 the stored energy function

Wile] = eWi le] + £ Whle] for all ¢ € U(w),

where (see Theorems 2 and 3)

Wliel = s [0 aaalep) 2] + 2 [NE) 1] — (0, 4 gt (420),

Whlel = K i (%can(e) —2) + A (2L 1) - (A, 4y 1og (90,
U (w) == {p € H'(w;R?); d1p Adaip # 0 ace. in w,
asz(p) € H'(w;R?), K(p) >0 ae. in w},

with K(p) := |01 A D2p| " (O1a3(p) A D2a3(p)) - az(ep).
Then, for each @ € U’ (@),

Wf{ [p] = EagﬂaTGUT(‘P)Gaﬁ () + 538§BUTRGT(‘:0)Raﬁ(‘P)
+O0E G + | R(@)I1P) + ole|G(@)lI” + | R(9)[7)-

(
(b) In the particular case where S = 0(w) is a portion of a sphere and the constants
appearing in the definition of Wﬁ/[ [¢] and Wﬁﬂ [¢] are defined by

)\* = ) K = 7>\* = o 5 * =
Nop e TH 3+ 2u) M

)

Al s Al R 12
3
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where A > 0 and p > 0 denote the Lamé constants appearing in the definition of the two-
dimensional elasticity tensor a®P°™ used to define Koiter’s energy Ji (see Section 3), then

3
Wilel = 5077 Gor(9)Cas () + a7 Ryr(9)Ras(p)
+ 0G|+ [R)IP) + ol G + | R()[*).

Proof. The assertions of the theorem are simple consequences of Theorems 2 and 3. (]

8. EXISTENCE THEOREM FOR A NONLINEAR SHELL MODEL OF KOITER’S TYPE

We are now in a position to establish an existence theorem for a nonlinear shell model
whose total energy coincides to within the first order with Koiter’s energy when the middle
surface of the undeformed shell is a portion of a sphere; cf. Theorem 4(b).

Theorem 5. Given any immersion 6 € C?(w;R3) such that the surface S = 0(w) is elliptic,
any € > 0, and any non-empty relatively open subset vg of v := Ow, define the functional
J :U(w) = RU{+o0} by letting

U(w) :={p € H'(w;R?); a(p) € L'(w), d1p Adap # 0 a.e. in w,
asz(p) € H' (w;R?), ¢(p) € LY (w), K(p) >0 ae. in w,
@ =60 and az(p) = az dy-a.e. in v},
and
Tieli= [ Whlelady - Lig] forall ¢ € U(w),

where WIu{ = eW}L[ + 53W}3ﬂ denotes the stored energy function defined in Theorem 4, and
L: HY(w;R3) — R is a linear and continuous functional.
Then there exists a vector field ¥ € U(w) such that

Jp) = %1312@ Il

Proof. (i) Since w is bounded and, for each ¢ € U(w),

tap() € D), ale) € (o), and — log (U2))

the integrand W]ﬁw [¢]v/a is bounded from below by a function in L!(w). Hence, for each
¢ € U(w), the integral

[ eWhlelvady

is well defined, either as a real number or as +o0o. Applying the same argument to the
function Wgﬂ [¢]v/a shows that, for each ¢ € U(w), the integral

/ EWElp]Vady

is likewise well defined, either as a real number or as +o0o0. Hence the functional J : U (w) —
R U {400} appearing in the statement of the theorem is well-defined.
Using in particular the inequality

2Va(p)/a < aPaqs(ep),
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we next deduce that

it =[5 s (42) ] ot b (42) -

> %[@ 21og2} +u*[ Paas(p) —2log (%) —2}
> % [@ — 210g2} + % [ao‘ﬁaag(cp) — 410g2}
and
a*aas(ep) = oY Z |Dasp|?,

SUPyew || aaﬁ
where ||(aas(y))| denotes the spectral norm of the matrix (aqs(y)) € S2.

The above two inequalities combined with two analogous inequalities for Wg [], and with
Poincaré’s inequality, show that the functional J : U(w) — R U {400} is coercive in the
following sense: If a sequence (¢,,) C U (w) satisfies

sup J[p,,] < oo,
n

then the sequences
(,) and (as(ep,)) are bounded in H*(w;R?),

and the sequences (a(e,)) and (c(p,)) are bounded in L} (w). Since a(,) = |01, Ad2¢p,
and c(p,,) = |01a3(p,) A d2a3(p,,)|* a.e. in w (see Section 3), the sequences

(D1, A Datp,,) and (d1az(p,,) A O2a3(ep,,)) are bounded in L?(w; R?).

| 2

(ii) Let (¢,,) C€ U(w) denote an infimizing sequence of the functional J over the set
U(w). Since then sup, J[p,] < oo (note that inf,cy(n) J[p] < oo since U(w) contains
at least one element, namely ), the above coerciveness property of J implies that there
exists an infimizing subsequence, still denoted (¢,,) C U(w), of the functional J and there
exist vector fields 9 € H(w;R3), n € H'(w;R3), ¢ € L*(w), and & € L?(w), such that, as
n — 0o,

@, — % and as(p,) — 1 in H'(w;R?),
(8.1) ®, — ¥ and az(p,) — 1 in L*(w;R?) and a.e. in w,
01, N Do, — ¢ and O1az(p,,) A daas(p,) — & in L*(w).
We now show that the limits appearing in (8.1) satisfy in addition the relations
In| =1and 9,9 - =0 ae.in w,
(8.2) (=01 Nt and € = 01m A Oam a.e. in w,
9 = 0 and n = a3 dy-a.e. on 7.
The first two equalities of (8.2) follow from the relations
las(p,,)| =1 and as(p,,) — n a.e. in w,
Dap,, - a3(p,) =0 and Dy, - az(p,) — Oath -1 in L (w).
The third equality of (8.2) follow from the convergence (see (8.1))
o1, N Do, — ¢ in L*(w),
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combined with the relations
1

- %{81(’(# A 821,/)) + 82(81’1,[) N ’l,ll)} = 01 A Do) in D/(UJ;RS).

The fourth equality of (8.2) is proved in the same manner as the third above.
The fifth and sixth equalities of (8.2) follow from the relations

@, =0 and a3(yp,) = a3 dvy-a.e. on 7,
which hold for every n € N, by using that
@n = in H (Wi R?) = @, = ¥y, in L2(70; R?),
az(p,) = nin H(w;R?) = az(p,)|yy = nly in L2 (10;R?),

where the notation )|, denotes the trace on o of a vector field ¥ € H' (w; R?).
(iii) Let the functions Wy : w x Dy — R and Wy : w x Dy — R be respectively defined
by

Wt (9, o, €) = i [0 ()1t - wg — 2] + A, [(Z'(;))Q 1]
— (A + ps) log <(ea(;))2>
and
o e o m e 2) 2 (L9

_ (5\* + f1.) log ((.f;(yq))Qﬂ

for each y € w, each (g, uq,e) € D, and each (q7va,~f) eD,. )
Let D := R3 x (R3)2 x R3 and let the functions Wy; : w x D — R U {+oc} and W :
w x D — RU{+o00} be defined by letting, for each y € w,
WM(ya(Luave) ::WM(yaq7’u'Ome) if (q,’U,O”e) € D+7
+ 00 if (q,uq,e) €D —Dy,

and

Wr(y,q,va, F) =Wr(y,q,va, f) if (q,v4, f) € Dy,
+ 00 lf(qvvomf)GD_D"r

Let the function W : w x R3 x R? — RU{+o0} be defined for each (y,q, F) € w x R? x R?
by

W(y,q, F) = Wi (y, q, wa, €)Valy), where F := (uq, ),
and let the sequences (n,,) and (F',) be defined by
N, = (13(30") and F, := (a(xsovmalson A azsan)

Since
7, — M a.e.in w,

F, = F = (0,9,01% A &) in L*(w;RY),
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it is easy to see that the function W and the sequences (n,,) and (F',,) satisfy the assumptions
of Theorem 1. Therefore,

/ War (-1, 0ath, D19 A ath)/a dy

(83) < hmlnf/ WM(7 ‘13(80n)a 3a90m 319% A 62§0n)\/ady

n—roo

= hmlnf/ WM e.lVady.

Likewise, let the function W* : w x R? x R? — R U {+oc} be defined for each (y,q, F) €
w x R3 x RY by
W*(y,q, F) = Wr(y, q,va, f)Va(y), where F := (va, f),
and let the sequences (n,,) and (F') be defined by
M, = as(p,) and  F = (Oaas(p,), d1as(p,) A D2as(p,)).

Since
n, — N ae. inw,

F* = F* := (0,m,01m A 0am) in L*(w;RY),

it is easy to see that the function W* and the sequences (n,,) and (F'),) also satisfy the
assumptions of Theorem 1. Therefore,

/ Wr(-,n,0am, 01 A Oam)Vady

(8.4) < liminf / Wi, 3(0n), Oatta(@n), Dra3(0n) A dras(e,))vady

n—roo

= hmlnf/ WF v, |Vady.

(iv) Since
hnrgloréf/ Wi e Vady + 1iminf/ EWlip, |Vady
< lim mf/ W e, lVady = lim 1an[<pn] + L[v] < o0,
we infer from inequalities (8.3) and (8.4) that
/w (-0, Dt 8p 1 Do)y < o
and

/ an7 an7alnA82n)fdy<oo
w
Hence, for almost all y € w

War(y,n(y), 0ath(y), 14 (y) A dorp(y)) < +oo,
Wr(y, n(y), 0an(y), 01m(y) A d2m(y)) < +o0,
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which combined with the above definition of the functions Wy, and Wy imply that, for
almost all y € w,

(1(y), 0atp(y), 019 (y) A 023 (y)) € Dy,
(1(y), dan(y), 1n(y) A G2n(y)) € Dy

Consequently, for almost all y € w,

(019 (y) A 923 (y)) - m(y) > 0 and (91m(y) A 92m(y)) - m(y) > 0.
Combined with the relations (see (8.2))

In(y)| =1 and datp(y) - n(y) =0 ae. inw,

the previous inequalities show that

Y ANDap £ 0 and (O1m A Oam) -m > 0 a.e. in w,
and then that

n=as(y) = m a.e. in w.
Besides,

a() = o1 A | = [¢]? € LY (w)
and

() = [D1as() A Dras(¥)|* = [€]° € L' ().
This shows that @ € U(w). Hence the left-hand sides of the inequalities (8.3) and (8.4)
satisfy

/ War (-, 0, D43 A Do) /a dy = / W, []v/a dy
and

/ Wi (-, 0am, 011 A Dam)Vady = / WElVady.
Therefore inequalities (8.3) and (8.4) together imply that

[ {ewiilwl+ ewigvady

< lim inf / {eWMapn] +53W§£[gan]}\/ady,

n— oo

which implies in turn that
JI] + LIy] < liminf(J[p,] + Lip,]) = inf Jlp]+ L].
n—00 peU (w)
Thus

J[Y] = oot [¢],

which completes the proof. O

Remark. 1t is likely that the specific nonlinear shell model appearing in Theorem 5 could
be also justified by comparison with the three-dimensional model of nonlinear elasticity, by
means of I-convergence theory as in [6] and [7]. This objective will be addressed in a future
work.
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