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EXISTENCE THEOREM FOR A NONLINEAR ELLIPTIC SHELL

MODEL

RENATA BUNOIU, PHILIPPE G. CIARLET, AND CRISTINEL MARDARE

Abstract. In this paper we introduce a new nonlinear shell model with the following

properties. First, we show that, if the middle surface of the undeformed shell is elliptic,

then this new nonlinear shell model possesses solutions which are also elliptic surfaces.
Second, we show that, if in addition the middle surface of the undeformed shell is a

portion of a sphere, then the total energy of this nonlinear shell model coincides to

within the first order, i.e., for “small enough” change of metric and change of curvature
tensors, with the total energy of the well-known Koiter nonlinear shell model.

1. Introduction

A fundamental existence theorem that applies to a large class of models in three-dimen-
sional nonlinear elasticity was established in a landmark paper [1] by J. Ball. By contrast,
no existence theorem is as yet available for any nonlinear shell model that combines the
“membrane effects” and the “flexural effects” that may classically arise in a deformed shell
(except in the very special case of nonlinearly elastic “shallow shells”; cf., e.g., [5] and the
references quoted therein).

This paper aims at achieving this objective in the particular case where the middle surface
of the shell is elliptic. Specifically, our main result (Theorem 5) establishes the existence
of a solution to a nonlinear shell model in this particular case. More specifically, we show
that the unknown deformation ψ : ω → R3 of the middle surface S := θ(ω) of the reference
configuration of a shell is a minimizer, over a specific set U(ω) of admissible deformations,
of a functional J : U(ω)→ R of the form

J [ϕ] :=

∫
ω

(
εW ]

M [ϕ] + ε3W ]
F [ϕ]

)√
a dy − L[ϕ] for all ϕ ∈ U(ω),

where 2ε > 0 denotes the thickness of the shell,
√
a dy denotes the area element along S,

and L denotes a linear form that takes into account the applied forces.

The integrands W ]
M [ϕ] and W ]

F [ϕ] appearing in the above expression of J [ϕ] respectively
model the “membrane effects” and the “flexural effects” that arise in the deformed shell (the
middle surface of which is ϕ(ω)). These integrands are defined explicitly in terms of the
fundamental forms of the surface ϕ(ω) by means of specific stored energy functions WM

and WF (see Theorems 2 and 3) that are polyconvex and orientation-preserving in a sense
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specified in Section 4. Besides, we prove in Theorem 4(b) that, if S is a portion of a sphere,
then the integrand

εW ]
M [ϕ] + ε3W ]

F [ϕ]

appearing in the above definition of J [ϕ] coincide for “small enough” change of metric and
change of curvature tensors with the integrand

ε

2
aαβστGστ (ϕ)Gαβ(ϕ) +

ε3

6
aαβστRστ (ϕ)Rαβ(ϕ)

appearing in the definition of the total energy of the well-known Koiter nonlinear shell model
(see Section 3).

2. Preliminaries

This section gathers the notions about the differential geometry of surfaces in R3 that
will be used throughout the paper. For more details on these notions, we refer the reader
to, e.g., [3].

Greek indices and exponents range in the set {1, 2}, Latin indices and exponents range
in the set {1, 2, 3} (save when they are used for indexing sequences), and the summation
convention with respect to repeated indices and exponents is used.

The Euclidean norm, the inner product, and the vector product, of vectors in R3 are
respectively denoted |a|, a ·b, and a∧b. The set of all 2×2 real positive-definite symmetric
matrices is denoted S2>.

A domain in R2 is a bounded, connected, open subset ω ⊂ R2 with a Lipschitz-continuous
boundary γ := ∂ω, the set ω being locally on the same side of γ. A generic point in the
set ω is denoted y = (yα) and partial derivatives, in the classical or distributional sense, are
denoted ∂α := ∂/∂yα and ∂αβ := ∂2/∂yα∂yβ .

A mapping ϕ ∈ C2(ω;R3) is an immersion if it satisfies ∂1ϕ(y) ∧ ∂2ϕ(y) 6= 0 at each
point y ∈ ω.

Throughout this paper, the middle surface of the reference configuration of a nonlinearly
elastic shell is denoted and defined by S = θ(ω), where θ ∈ C2(ω;R3) is a given immersion.
The two vectors

aα(y) := ∂αθ(y)

are then linearly independent at all points y ∈ ω and span the tangent plane to the surface
S, and the vector field

a3 :=
a1 ∧ a2

|a1 ∧ a2|
∈ C1(ω;R3)

is a unit normal vector field along the surface S. For each y ∈ ω, the three vectors ai(y)
form a basis in R3; its dual basis is denoted and defined by

ai(y) · aj(y) = δij ,

where δij is the Kronecker symbol. The area element along S is
√
a dy, where

a := det (aαβ) = |a1 ∧ a2|2.

The covariant and contravariant components aαβ and aαβ of the first fundamental form,
or metric tensor, of S, the covariant and mixed components bαβ and bβα of the second
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fundamental form of S, and the covariant components cαβ of the third fundamental form of
S, are then defined by letting:

aαβ := aα · aβ , aαβ := aα · aβ ,

bαβ := ∂αaβ · a3 = −aβ · ∂αa3, bβα := aβσbσα,

cαβ := bσαbσβ = ∂αa3 · ∂βa3.

The notation L2(ω;R3) denotes the space of vector fields ξ = (ξi) : ω → R3 with compo-
nents ξi in the usual Lebesgue space L2(ω). It is equipped with the norm

‖ξ‖L2(ω) :=
(∫

ω

|ξ(y)|2dy
)1/2

for any ξ ∈ L2(ω;R3),

where |ξ(y)| denotes the Euclidean norm of the vector ξ(y) ∈ R3 (as already mentioned
before).

Likewise, the notation H1(ω;R3) denotes the space of vector fields ξ = (ξi) : ω → R3

with components ξi in the usual Sobolev space H1(ω). It is equipped with the norm

‖ξ‖H1(ω) :=
(
‖ξ‖2L2(ω) +

2∑
α=1

‖∂αξ‖2L2(ω)

)1/2
for any ξ ∈ H1(ω;R3).

Strong and weak convergences are respectively denoted → and ⇀.

3. Koiter’s nonlinear shell model

We consider a shell made of a homogeneous and isotropic hyperelastic material, whose
reference configuration is a natural state; hence the constituting material of the shell is
characterized by its two Lamé constants λ > 0 and µ > 0. The reference configuration of
the shell is the set

{θ(y) + x3a3(y); y ∈ ω, −ε ≤ x3 ≤ ε},
defined in terms of a surface S = θ(ω) ⊂ R3 and a parameter ε > 0.

A deformation of the middle surface of the shell is a smooth enough mapping ϕ : ω → R3.
Koiter’s nonlinear shell model, introduced by Koiter [8] in 1966, is one of the most com-

monly used two-dimensional nonlinear shell models in computational mechanics. It states
that the unknown deformation ψ : ω → R3 of the middle surface S = θ(ω) of the shell sub-
jected to applied forces should minimize a functional, called the total energy of the deformed
shell, over an appropriate set of admissible deformations, both of which we now define.

Given an arbitrary deformation ϕ : ω → R3 of the surface S = θ(ω) with smooth enough
components, the functions

aαβ(ϕ) := aα(ϕ) · aβ(ϕ), where aα(ϕ) := ∂αϕ,

denote the covariant components of the first fundamental form of the deformed surface ϕ(ω),
and the functions

Gαβ(ϕ) :=
1

2
(aαβ(ϕ)− aαβ)

denote the covariant components of the change of metric tensor field associated with the
deformation ϕ of S. The area element along the surface ϕ(ω) ⊂ R3 is

√
a(ϕ) dy, where

a(ϕ) := det (aαβ(ϕ)) = |a1(ϕ) ∧ a2(ϕ)|2.
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If the two vectors aα(ϕ) are linearly independent at all points of ω, then the vector field

a3(ϕ) :=
a1(ϕ) ∧ a2(ϕ)

|a1(ϕ) ∧ a2(ϕ)|
is well-defined and defines a unit normal vector field to the deformed surface ϕ(ω), the
functions aαβ(ϕ) defined by

(aαβ(ϕ)) := (aαβ(ϕ))−1

denote the contravariant components of the first fundamental form of the deformed surface
ϕ(ω), the functions

bαβ(ϕ) := ∂αβϕ · a3(ϕ) = −∂αϕ · ∂βa3(ϕ)

denote the covariant components of the second fundamental form of the deformed surface
ϕ(ω), the functions

Rαβ(ϕ) := bαβ(ϕ)− bαβ
denote the covariant components of the change of curvature tensor field associated with the
deformation ϕ of S, the functions

cαβ(ϕ) := ∂αa3(ϕ) · ∂βa3(ϕ) = bασ(ϕ)aστ (ϕ)bτβ(ϕ)

denote the covariant components of the third fundamental form tensor field of the deformed
surface ϕ(ω), and the functions

Pαβ(ϕ) :=
1

2
(cαβ(ϕ)− cαβ)

denote the covariant components of the change of third fundamental form associated with
the deformation ϕ of S. The area element along the surface (a3(ϕ))(ω) ⊂ R3 is

√
c(ϕ) dy,

where
c(ϕ) := det (cαβ(ϕ)).

Note that
c(ϕ) = K(ϕ)2a(ϕ),

where
K(ϕ) := det (bαβ(ϕ))/det (aαβ(ϕ))

denotes the total curvature of the surface ϕ(ω), and that

∂1a3(ϕ) ∧ ∂2a3(ϕ) = K(ϕ)(a1(ϕ) ∧ a2(ϕ))

= K(ϕ)
√
a(ϕ)a3(ϕ).

The last relation implies in particular that

(∂1a3(ϕ) ∧ ∂2a3(ϕ)) · a3(ϕ) = K(ϕ)
√
a(ϕ).

The unknown ψ : ω → R3 appearing in Koiter’s nonlinear shell model represents the
position vector field of the unknown deformed middle surface ψ(ω) of the shell, and as such
is assumed to satisfy a boundary condition of the form

ψ = θ and a3(ψ) = a3 on γ0,

where γ0 is a non-empty relatively open subset of γ := ∂ω, which means that the shell is
assumed to be clamped on θ(γ0). In addition, the unknown ψ is subjected to the constraint

∂1ψ ∧ ∂2ψ 6= 0 in ω,

so as to insure that the tangent plane is well defined at each point of the deformed surface.
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Taking appropriate a priori assumptions into account, W.T. Koiter concludes that the
unknown deformation ψ of the middle surface S = θ(ω) of the shell should be a minimizer,
over a set of smooth enough vector fields ϕ : ω → R3 satisfying the boundary conditions

ϕ = θ and a3(ϕ) = a3 on γ0,

of the total energy of the deformed surface ϕ(ω), denoted and defined by

JK [ϕ] :=

∫
ω

{ε
2
aαβστGστ (ϕ)Gαβ(ϕ) +

ε3

6
aαβστRστ (ϕ)Rαβ(ϕ)

}√
a dy − L[ϕ],

where the functions

aαβστ :=
4λµ

λ+ 2µ
aαβaστ + 2µ(aασaβτ + aατaβσ)

are the contravariant components of the (uniformly positive-definite) elasticity tensor of the
shell, λ > 0 and µ > 0 are the Lamé constants of the constitutive material, and L is a linear
functional that takes into account the applied forces.

The integral
ε

2

∫
ω

aαβστGστ (ϕ)Gαβ(ϕ)
√
a dy is called the membrane part of Koiter’s en-

ergy, while the integral
ε3

6

∫
ω

aαβστRστ (ϕ)Rαβ(ϕ)
√
a dy is called the flexural part of Koiter’s

energy.

4. Polyconvex and orientation-preserving stored energy functions defined
on a surface

The notion of polyconvexity has been introduced by Ball [1] in three-dimensional elas-
ticity in order to establish an existence theorem for the minimization problem of nonlinear
elasticity. It has been subsequently generalized to a class of more general functionals in [2],
and has been adapted in [4] to “orientation-preserving” functionals, whose argument is a
pair of vector fields defined on a surface, representing the deformation of the middle surface
of a shell and the rotated unit normal vector field along the deformed middle surface. In
this paper we adapt the definition of polyconvexity on a surface of [4] to a class of func-
tionals that are “orientation-preserving” and whose argument is a single vector field defined
on a surface (like Koiter’s energy defined in Section 3), representing the deformation of the
middle surface of a shell.

Let ω be a domain in R2 and let

E+ := {(q,uα) ∈ R3 × (R3)2; (u1 ∧ u2) · q > 0},
D+ := {(q,uα, e) ∈ R3 × (R3)2 × R3; e · q > 0},
D+(q) := {(uα, e) ∈ (R3)2 × R3; e · q > 0} for each q ∈ R3 with q 6= 0.

Note that the set D+(q) is convex for each q ∈ R3 with q 6= 0.
A stored energy function W : ω × E+ → R is said to be orientation-preserving if, for

almost all y ∈ ω,

W (y, q,uα)→∞ if (q,uα) ∈ E+ satisfies (u1 ∧ u2) · q → 0+.
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An orientation-preserving stored energy function W : ω × E+ → R is said to be poly-
convex if there exists a function W : ω × D+ → R with the following properties:

W (y, q,uα) = W(y, q,uα,u1 ∧ u2) for a.e. y ∈ ω and for all (q,uα) ∈ E+,

W(y, q, ·) : D+(q)→ R is convex for a.e. y ∈ ω and for all q ∈ R3 with q 6= 0,

W(y, ·) : D+ → R is continuous for a.e. y ∈ ω,
W(·, q,uα, e) : ω → R is measurable for all (q,uα, e) ∈ D+.

These notions of polyconvexity and orientation-preserving will be used in Section 8 to
prove the existence of solution to a new nonlinear shell model, defined in Section 7 by
replacing in Koiter’s model the stored energy function. To do this, we will need in addition
a theorem due to Ball, Currie & Olver [2, Theorem 5.4], recorded here with our notation for
reader’s convenience.

Theorem 1. Let W : ω × R3 × R9 → R ∪ {+∞} satisfy the following properties:

W(·, q,F ) : ω → R ∪ {+∞} is measurable for every (q,F ) ∈ R3 × R9,

W(y, ·, ·) : R3 × R9 → R ∪ {+∞} is continuous for almost all y ∈ ω,
W(y, q, ·) : R9 → R ∪ {+∞} is convex for almost all y ∈ ω and all q ∈ R3.

Let ηn : ω → R3, n ∈ N, and η : ω → R3 be measurable functions such that ηn → η a.e.
in ω as n→∞, and let F n ∈ L1(ω;R9) and F ∈ L1(ω;R9) such that F n ⇀ F in L1(ω;R9)
as n→∞. Suppose further that there exists a function g ∈ L1(ω) such that

W(y,ηn(y),F n(y)) ≥ g(y) and W(y,η(y),F (y)) ≥ g(y)

for all n ∈ N and almost all y ∈ Ω. Then∫
ω

W(y,η(y),F (y))dy ≤ lim inf
n→∞

∫
ω

W(y,ηn(y),F n(y))dy.

5. A polyconvex and orientation-preserving stored energy function of
membrane type

In this section we define a polyconvex and orientation-preserving stored energy function

W ]
M that coincides to within the first order with the membrane part of Koiter’s energy. To

begin with, we need to establish the following preliminary result:

Lemma 1. Given any mapping ϕ ∈ C1(ω;R3), the following relations hold in ω:

aαβaαβ(ϕ) = 2 + 2aαβGαβ(ϕ),

aασaβτaστ (ϕ)aαβ(ϕ) = 2 + 4aαβGαβ(ϕ) + 4aασaβτGαβ(ϕ)Gστ (ϕ),

and

a(ϕ)/a = 1 + 2 aαβGαβ(ϕ) + 2(aαβGαβ(ϕ))2 − 2 aαβaστGασ(ϕ)Gβτ (ϕ),

log
(
a(ϕ)/a

)
= 2aαβGαβ(ϕ)− 2aασaβτGαβ(ϕ)Gστ (ϕ) + o(‖G(ϕ)‖2),

where

‖G(ϕ)‖2 := aαβaστGασ(ϕ)Gβτ (ϕ).
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Proof. The first two relations are easily deduced from the definition of the functions Gαβ(ϕ),
which implies that

aαβ(ϕ) = aαβ + 2Gαβ(ϕ) in ω.

The third relation is deduced from the identity

a(ϕ) = det (aαβ(ϕ)) = det (aαβ + 2Gαβ(ϕ))

= a
[
1 + 2aαβGαβ(ϕ) + 4 det (aασGσβ(ϕ))

]
,

and from the Cayley-Hamilton theorem applied to the matrix field with componentsGαβ(ϕ) :=

aασGσβ(ϕ), which shows that

Gαβ(ϕ)Gβα(ϕ)− (Gαα(ϕ))2 + 2 det (Gαβ(ϕ)) = 0,

or equivalently, that

2 det (Gαβ(ϕ)) = (aαβGαβ(ϕ))2 − aαβaστGασ(ϕ)Gβτ (ϕ).

�

Theorem 2. Given any immersion θ ∈ C1(ω;R3) and any two constants λ∗ > 0 and µ∗ > 0,
define the function

W ]
M [ϕ] := µ∗

[
aαβaαβ(ϕ)− 2

]
+ λ∗

[a(ϕ)

a
− 1
]
− (λ∗ + µ∗) log

(a(ϕ)

a

)
for all ϕ ∈ H1(ω;R3) that satisfy ∂1ϕ ∧ ∂2ϕ 6= 0 a.e. in ω.

Then there exists a polyconvex and orientation-preserving function WM : ω × E+ → R
(see Section 4) such that

W ]
M [ϕ] = WM (·,a3(ϕ), ∂αϕ) a.e. in ω,

for all ϕ ∈ H1(ω;R3) that satisfy ∂1ϕ ∧ ∂2ϕ 6= 0 a.e. in ω.
Besides, for each ϕ ∈ C1(ω;R3),

W ]
M [ϕ] = aαβστ∗ Gστ (ϕ)Gαβ(ϕ) + o(‖G(ϕ)‖2) in ω,

where

aαβστ∗ := 2λ∗a
αβaστ + µ∗(a

ασaβτ + aατaβσ).

Proof. Let (cf. Section 4)

E+ := {(q,uα) ∈ (R3)3; (u1 ∧ u2) · q > 0},
D+ := {(q,uα, e) ∈ (R3)4; e · q > 0},

D+(q) := {(uα, e) ∈ (R3)3; e · q > 0} for each q ∈ R3 with q 6= 0.

Define the function WM : ω × D+ → R by letting, for each y ∈ ω and each (q,uα, e) ∈ D+,

WM (y, q,uα, e) := µ∗

[
aαβ(y)uα · uβ − 2

]
+ λ∗

[ (e · q)2

a(y)
− 1
]

− (λ∗ + µ∗) log
( (e · q)2

a(y)

)
,

and the function WM : ω × E+ → R by letting, for each y ∈ ω and each (q,uα) ∈ E+,

WM (y, q,uα) := WM (y, q,uα,u1 ∧ u2).
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Since the matrix (aαβ(y)) is symmetric and positive-definite at each y ∈ ω, the mapping

(uα) ∈ R3 × R3 →
(
aαβ(y)uα · uβ

)1/2 ∈ R

is a norm over the space R3×R3. Together with the convexity of the functions t ∈ R→ t2 ∈ R
and t ∈ (0,∞) → − log t ∈ R, this property implies that, for each y ∈ ω and each q 6= 0,
the mapping WM (y, q, ·) : D+(q)→ R is convex. Besides, the mapping WM : ω × D+ → R
is continuous and satisfies

WM (y, q,uα, e)→∞ if (y, q,uα, e) ∈ ω × D+ with e · q → 0+.

Hence the function WM : ω×E+ → R is polyconvex and orientation-preserving in the sense
of Section 4.

The relations aα(ϕ) · aβ(ϕ) = aαβ(ϕ) and (a1(ϕ) ∧ a2(ϕ)) · a3(ϕ) =
√
a(ϕ) show that,

for each ϕ ∈ H1(ω;R3) such that ∂1ϕ ∧ ∂2ϕ 6= 0 a.e. in ω,

W ]
M [ϕ] = WM (·,a3(ϕ),aα(ϕ)) = WM (·,a3(ϕ),aα(ϕ),a1(ϕ) ∧ a2(ϕ)) a.e. in ω.

This completes the proof of the first part of the theorem.

It remains to prove that W ]
M [ϕ] depends on ϕ only by means of Gαβ(ϕ), then to identify

the first order term of W ]
M [ϕ] with respect to Gαβ(ϕ). Let for brevity

Gαβ := Gαβ(ϕ) and ‖G‖2 := aαβaστGασGβτ .

Using the Taylor expansions of Lemma 1 in the definition of W ]
M [ϕ], we deduce that

W ]
M [ϕ] = µ∗

[
aαβaαβ(ϕ)− 2

]
+ λ∗

[a(ϕ)

a
− 1
]
− (λ∗ + µ∗) log

(a(ϕ)

a

)
= 2µ∗ a

αβGαβ + 2λ∗

[
aαβGαβ + (aαβGαβ)2 − aαβaστGασGβτ

]
− 2(λ∗ + µ∗)

[
aαβGαβ − aαβaστGασGβτ

]
+ o(‖G‖2)

= 2λ∗(a
αβGαβ)2 + 2µ∗ a

αβaστGασGβτ + o(‖G‖2)

= aαβστ∗ GστGαβ + o(‖G‖2).

�

Remark. The definition of the function W ]
M can be replaced in Theorem 2 by the following

more general expression:

W ]
M [ϕ] := C1

[
aασaβτaστ (ϕ)aαβ(ϕ)

]p1
+ C2

[
aαβaαβ(ϕ)

]p2
+ C3

[a(ϕ)

a

]p3
− C4 log

[a(ϕ)

a

]
− C5,

for appropriate choices (of which there exist infinitely many) of the constants Ck > 0 and
pk > 1.
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6. A polyconvex and orientation-preserving stored energy function of
flexural type

We define in this section a polyconvex and orientation-preserving stored energy function
“of flexural type” in the particular case where the middle surface S = θ(ω) of the shell is
elliptic, in contrast with the previous section where no such restriction was needed. This
assumption is needed here to ensure that the third fundamental form of S is positive-definite
at each point of ω.

More specifically, we assume in this section that the immersion θ ∈ C2(ω;R3) satisfies

(bαβ(y)) ∈ S2> for every y ∈ ω,
where bαβ := ∂αβθ ·a3 denote the covariant components of the second fundamental form of
S = θ(ω) (see Section 2). This assumption implies that the covariant components cαβ :=
∂αa3 · ∂βa3 ∈ C1(ω) of the third fundamental form of S also satisfy

(cαβ(y)) ∈ S2> for every y ∈ ω.

For each y ∈ ω, let (b̂αβ(y)) ∈ S2>, resp. (ĉαβ(y)) ∈ S2>, denote the inverse matrix of

the matrix (bαβ(y)) ∈ S2>, resp. (cαβ(y)) ∈ S2>. Note that ĉαβ := b̂ασaστ b̂
τβ and that the

functions b̂αβ and ĉαβ are distinct from the contravariant components

bαβ = aασbστa
τβ and cαβ = aασcστa

τβ

of the second and third fundamental forms of S = θ(ω).
To begin with, we show how the tensor field Pαβ(ϕ) can be expressed in terms of the

tensor fields Gαβ(ϕ) and Rαβ(ϕ) (these tensor fields are defined in Section 3).

Lemma 2. Let

U [(ω) := {ϕ ∈ C1(ω;R3); ∂1ϕ ∧ ∂2ϕ 6= 0 in ω, a3(ϕ) ∈ C1(ω;R3)}.

Then the following relation holds in ω for every ϕ ∈ U [(ω) that is sufficiently close in the
C1(ω)-norm to the immersion θ ∈ C2(ω;R3):

Pαβ(ϕ) = −bσαbτβGστ (ϕ) +
1

2

[
bσαRσβ(ϕ) + bσβRασ(ϕ) + aστRασ(ϕ)Rτβ(ϕ)

]
+ 2bγαb

δ
βa

στGγσ(ϕ)Gδτ (ϕ)− aστGγσ(ϕ)
[
bγαRβτ (ϕ) + bγβRατ (ϕ)

]
+ o(‖G(ϕ)‖2 + ‖R(ϕ)‖2).

Proof. Using the power series expansion of the inverse of a matrix of the form (I + A)−1,
where I denotes the identity matrix and ‖A‖ < 1 for some subordinate matrix norm (this
is where the assumption that ϕ be sufficiently close to θ in the C1(ω)-norm is used), in the
identity

aαβ(ϕ) = aασ(δσβ + 2aστGτβ(ϕ)),

we first deduce that
aαβ(ϕ) = aαβ − 2Ĝαβ(ϕ),

where
Ĝαβ(ϕ) = aασaβτGστ (ϕ)− 2aαγaβνaστGγσ(ϕ)Gντ (ϕ) + o(‖G(ϕ)‖2).

Using these relations and the relation

bαβ(ϕ) = bαβ +Rαβ(ϕ)
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in the right-hand side of the relation

Pαβ(ϕ) :=
1

2
(cαβ(ϕ)− cαβ) =

1

2
(aστ (ϕ)bασ(ϕ)bτβ(ϕ)− aστ bασbτβ),

we then deduce, after a series of straightforward calculations, that (for simplicity we omit
the dependence on ϕ of the functions Pαβ , Gαβ , and Rαβ , appearing in the formula below)

Pαβ = −bασaστGτγaγδbδβ +
1

2
(bασa

στRτβ +Rασa
στ bτβ +Rασa

στRτβ)

+ 2bασa
στGτγa

γδGδµa
µνbνβ −RασaστGτγaγδbδβ − bασaστGτγaγδRδβ

+ o(‖G‖2 + ‖R‖2).

�

Theorem 3. Given any immersion θ ∈ C2(ω;R3) such that the surface S = θ(ω) is elliptic

and given any two constants λ̂∗ > 0 and µ̂∗ > 0, let

W ]
F [ϕ] := K

[
µ̂∗

(
ĉαβcαβ(ϕ)− 2

)
+ λ̂∗

(c(ϕ)

c
− 1
)
− (λ̂∗ + µ̂∗) log

(c(ϕ)

c

)]
for each ϕ ∈ U ](ω), where

U ](ω) := {ϕ ∈ H1(ω;R3); ∂1ϕ ∧ ∂2ϕ 6= 0 a.e. in ω,

a3(ϕ) ∈ H1(ω;R3), K(ϕ) > 0 a.e. in ω},

and

K(ϕ) :=
1

|∂1ϕ ∧ ∂2ϕ|
(∂1a3(ϕ) ∧ ∂2a3(ϕ)) · a3(ϕ) and K := K(θ).

(a) Then there exists a polyconvex and orientation-preserving function WF : ω×E+ → R
(see Section 4) such that, for each ϕ ∈ U ](ω),

W ]
F [ϕ] = WF (·,a3(ϕ), ∂αa3(ϕ)) a.e. in ω.

Besides, for each ϕ ∈ U [(ω) (the set U [(ω) is defined in Lemma 2),

W ]
F [ϕ] = ĉαβστ∗ Pστ (ϕ)Pαβ(ϕ) + o(‖P (ϕ)‖2)

= b̂αβστ∗ Rστ (ϕ)Rαβ(ϕ) + o(‖R(ϕ)‖2) +O(‖G(ϕ)‖(‖G(ϕ)‖+ ‖R(ϕ)‖)),

where

b̂αβστ∗ :=K
[
2λ̂∗b̂

αβ b̂στ+
µ̂∗
2

(b̂ασ b̂βτ+b̂ατ b̂βσ)+
µ̂∗
4

(ĉασaβτ+ĉατaβσ+aασ ĉβτ+aατ ĉβσ)
]
,

ĉαβστ∗ := K
[
2λ̂∗ĉ

αβ ĉστ + µ̂∗(ĉ
ασ ĉβτ + ĉατ ĉβσ)

]
.

(b) If the surface S = θ(ω) is a portion of a sphere, then, for each ϕ ∈ U [(ω),

W ]
F [ϕ] = âαβστ∗ Rστ (ϕ)Rαβ(ϕ) + o(‖R(ϕ)‖2) +O(‖G(ϕ)‖(‖G(ϕ)‖+ ‖R(ϕ)‖)),

where

âαβστ∗ := 2λ̂∗a
αβaστ + µ̂∗(a

ασaβτ + aατaβσ).
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Proof. Define the function WF : ω×D+ → R by letting, for each y ∈ ω and each (q,vα,f) ∈
D+,

WF (y, q,vα,f) := K
[
µ̂∗

(
ĉαβ(y)vα · vβ − 2

)
+ λ̂∗

( (f · q)2

c(y)
− 1
)

− (λ̂∗ + µ̂∗) log
( (f · q)2

c(y)

)]
,

and define the function WF : ω×E+ → R by letting, for each y ∈ ω and each (q,vα) ∈ E+,

WF (y, q,vα) := WF (y, q,vα,v1 ∧ v2).

Since the functions cαβ coincide with the covariant components of the first fundamental
form of the surface a3(ω) ⊂ R3 (a3 : ω → R3 is an immersion since the surface S = θ(ω) is
elliptic), and since K > 0 in ω, Theorem 2 shows that WF is polyconvex and orientation-
preserving (these notions have been defined in Section 4), that

W ]
F [ϕ] = WF (·,a3(ϕ), ∂αa3(ϕ)) = WF (·,a3(ϕ), ∂αa3(ϕ), ∂1a3(ϕ) ∧ ∂2a3(ϕ))

for all ϕ ∈ U ](ω), and that

W ]
F [ϕ] = ĉαβστ∗ Pστ (ϕ)Pαβ(ϕ) + o(‖P (ϕ)‖2)

for all ϕ ∈ U [(ω).

It remains to identify the first order term of W ]
F [ϕ] with respect to Gαβ(ϕ) and Rαβ(ϕ).

By replacing the functions Pστ (ϕ) and Pαβ(ϕ) appearing in the above formula by their
expressions given in Lemma 2, viz. (for simplicity, we omit in this proof the dependence on
ϕ of the functions Pαβ , Gαβ , and Rαβ),

Pαβ = −bγαbδβGγδ +
1

2

[
bγαRγβ + bγβRαγ + aγδRαγRδβ

]
+ 2bγαb

δ
βa

λµGγλGδµ − aλµGγλ
[
bγαRβµ + bγβRαµ

]
+ o(‖G‖2 + ‖R‖2),

Pστ = −bλσbµτGλµ +
1

2

[
bλσRλτ + bλτRσλ + aλµRσλRµτ

]
+ 2bγσb

δ
τa
ρνGγρGδν − aρνGγρ

[
bγσRτν + bγτRσν

]
+ o(‖G‖2 + ‖R‖2),

we first deduce that

W ]
F [ϕ] = ĉαβστ∗ bλσb

µ
τGλµb

γ
αb
δ
βGγδ

− 1

2
ĉαβστ∗ bλσb

µ
τGλµ

[
bγαRγβ + bγβRαγ

]
− 1

2
ĉαβστ∗

[
bλσRλτ + bλτRσλ

]
bγαb

δ
βGγδ

+
1

4
ĉαβστ∗

[
bλσRλτ + bλτRσλ

][
bγαRγβ + bγβRαγ

]
+ o(‖G‖2 + ‖R‖2).

This in turn implies that

W ]
F [ϕ] =

1

4
ĉαβστ∗

[
bλσRλτ + bλτRσλ

][
bγαRγβ + bγβRαγ

]
+O(‖G‖2 + ‖G‖‖R‖) + o(‖R‖2)

=
1

4

[
ĉγβλτ∗ bσλb

α
γ + ĉαγλτ∗ bσλb

β
γ + ĉγβσλ∗ bαγ b

τ
λ + ĉαγσλ∗ bβγb

τ
λ

]
RστRαβ

+O(‖G‖2 + ‖G‖‖R‖) + o(‖R‖2).
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Then the conclusion follows by noting that

1

4

[
ĉγβλτ∗ bσλb

α
γ + ĉαγλτ∗ bσλb

β
γ + ĉγβσλ∗ bαγ b

τ
λ + ĉαγσλ∗ bβγb

τ
λ

]
= b̂αβστ∗ .

In the particular case where S = θ(ω) is a portion of a sphere, the mean curvature H
and the total curvature K of the surface S are related by K = H2. Consequently, the
Cayley-Hamilton theorem implies that

(bασ −Haασ)aστ (bτβ −Haτβ) = bασa
στ bτβ − 2Hbαβ +Kaαβ = 0,

which in turn implies that

bαβ = Haαβ , cαβ = Kaαβ , b̂
αβ = (1/H)aαβ , ĉαβ = (1/K)aαβ .

Since K = H2, it follows that

b̂αβστ∗ = âαβστ∗ .

This completes the proof. �

7. A polyconvex and orientation-preserving stored energy function of
Koiter’s type

By combining the results of the previous two sections, we are now able to define a poly-

convex and orientation-preserving stored energy function W ]
K [ϕ] that has in addition the

property that, when the middle surface of the undeformed shell is a portion of a sphere,
its leading term with respect to the change of metric and change of curvature tensors is
precisely Koiter’s stored energy function.

Theorem 4. (a) Given any immersion θ ∈ C2(ω;R3) such that the surface S = θ(ω) is
elliptic, define for each ε > 0 the stored energy function

W ]
K [ϕ] := εW ]

M [ϕ] + ε3W ]
F [ϕ] for all ϕ ∈ U ](ω),

where (see Theorems 2 and 3)

W ]
M [ϕ] := µ∗

[
aαβaαβ(ϕ)− 2

]
+ λ∗

[a(ϕ)

a
− 1
]
− (λ∗ + µ∗) log

(a(ϕ)

a

)
,

W ]
F [ϕ] := K

[
µ̂∗

(
ĉαβcαβ(ϕ)− 2

)
+ λ̂∗

(c(ϕ)

c
− 1
)
− (λ̂∗ + µ̂∗) log

(c(ϕ)

c

)]
,

U ](ω) := {ϕ ∈ H1(ω;R3); ∂1ϕ ∧ ∂2ϕ 6= 0 a.e. in ω,

a3(ϕ) ∈ H1(ω;R3), K(ϕ) > 0 a.e. in ω},

with K(ϕ) := |∂1ϕ ∧ ∂2ϕ|−1 (∂1a3(ϕ) ∧ ∂2a3(ϕ)) · a3(ϕ).

Then, for each ϕ ∈ U [(ω),

W ]
K [ϕ] = εaαβστ∗ Gστ (ϕ)Gαβ(ϕ) + ε3b̂αβστ∗ Rστ (ϕ)Rαβ(ϕ)

+O(ε2‖G(ϕ)‖2 + ε4‖R(ϕ)‖2) + o(ε‖G(ϕ)‖2 + ε3‖R(ϕ)‖2).

(b) In the particular case where S = θ(ω) is a portion of a sphere and the constants

appearing in the definition of W ]
M [ϕ] and W ]

F [ϕ] are defined by

λ∗ :=
λµ

λ+ 2µ
, µ∗ := µ, λ̂∗ :=

λµ

3(λ+ 2µ)
, µ̂∗ :=

µ

3
,
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where λ > 0 and µ > 0 denote the Lamé constants appearing in the definition of the two-
dimensional elasticity tensor aαβστ used to define Koiter’s energy JK (see Section 3), then

W ]
K [ϕ] :=

ε

2
aαβστGστ (ϕ)Gαβ(ϕ) +

ε3

6
aαβστRστ (ϕ)Rαβ(ϕ)

+O(ε2‖G(ϕ)‖2 + ε4‖R(ϕ)‖2) + o(ε‖G(ϕ)‖2 + ε3‖R(ϕ)‖2).

Proof. The assertions of the theorem are simple consequences of Theorems 2 and 3. �

8. Existence theorem for a nonlinear shell model of Koiter’s type

We are now in a position to establish an existence theorem for a nonlinear shell model
whose total energy coincides to within the first order with Koiter’s energy when the middle
surface of the undeformed shell is a portion of a sphere; cf. Theorem 4(b).

Theorem 5. Given any immersion θ ∈ C2(ω;R3) such that the surface S = θ(ω) is elliptic,
any ε > 0, and any non-empty relatively open subset γ0 of γ := ∂ω, define the functional
J : U(ω)→ R ∪ {+∞} by letting

U(ω) := {ϕ ∈ H1(ω;R3); a(ϕ) ∈ L1(ω), ∂1ϕ ∧ ∂2ϕ 6= 0 a.e. in ω,

a3(ϕ) ∈ H1(ω;R3), c(ϕ) ∈ L1(ω), K(ϕ) > 0 a.e. in ω,

ϕ = θ and a3(ϕ) = a3 dγ-a.e. in γ0},
and

J [ϕ] :=

∫
ω

W ]
K [ϕ]

√
a dy − L[ϕ] for all ϕ ∈ U(ω),

where W ]
K := εW ]

M + ε3W ]
F denotes the stored energy function defined in Theorem 4, and

L : H1(ω;R3)→ R is a linear and continuous functional.
Then there exists a vector field ψ ∈ U(ω) such that

J [ψ] = inf
ϕ∈U(ω)

J [ϕ].

Proof. (i) Since ω is bounded and, for each ϕ ∈ U(ω),

aαβ(ϕ) ∈ L1(ω), a(ϕ) ∈ L1(ω), and − log
(a(ϕ)

a

)
≥ 1− a(ϕ)

a
,

the integrand W ]
M [ϕ]

√
a is bounded from below by a function in L1(ω). Hence, for each

ϕ ∈ U(ω), the integral ∫
ω

εW ]
M [ϕ]

√
a dy

is well defined, either as a real number or as +∞. Applying the same argument to the

function W ]
F [ϕ]
√
a shows that, for each ϕ ∈ U(ω), the integral∫

ω

ε3W ]
F [ϕ]
√
a dy

is likewise well defined, either as a real number or as +∞. Hence the functional J : U(ω)→
R ∪ {+∞} appearing in the statement of the theorem is well-defined.

Using in particular the inequality

2
√
a(ϕ)/a ≤ aαβaαβ(ϕ),
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we next deduce that

W ]
M [ϕ] = λ∗

[a(ϕ)

a
− log

(a(ϕ)

a

)
− 1
]

+ µ∗

[
aαβaαβ(ϕ)− log

(a(ϕ)

a

)
− 2
]

≥ λ∗
2

[a(ϕ)

a
− 2 log 2

]
+ µ∗

[
aαβaαβ(ϕ)− 2 log

(aαβaαβ(ϕ)

2

)
− 2
]

≥ λ∗
2

[a(ϕ)

a
− 2 log 2

]
+
µ∗
2

[
aαβaαβ(ϕ)− 4 log 2

]
and

aαβaαβ(ϕ) ≥ 1

supy∈ω ‖(aαβ(y))‖
∑
α

|∂αϕ|2,

where ‖(aαβ(y))‖ denotes the spectral norm of the matrix (aαβ(y)) ∈ S2>.

The above two inequalities combined with two analogous inequalities for W ]
F [ϕ], and with

Poincaré’s inequality, show that the functional J : U(ω) → R ∪ {+∞} is coercive in the
following sense: If a sequence (ϕn) ⊂ U(ω) satisfies

sup
n
J [ϕn] <∞,

then the sequences

(ϕn) and (a3(ϕn)) are bounded in H1(ω;R3),

and the sequences (a(ϕn)) and (c(ϕn)) are bounded in L1(ω). Since a(ϕn) = |∂1ϕn∧∂2ϕn|2
and c(ϕn) = |∂1a3(ϕn) ∧ ∂2a3(ϕn)|2 a.e. in ω (see Section 3), the sequences

(∂1ϕn ∧ ∂2ϕn) and (∂1a3(ϕn) ∧ ∂2a3(ϕn)) are bounded in L2(ω;R3).

(ii) Let (ϕn) ⊂ U(ω) denote an infimizing sequence of the functional J over the set
U(ω). Since then supn J [ϕn] < ∞ (note that infϕ∈U(ω) J [ϕ] < ∞ since U(ω) contains
at least one element, namely θ), the above coerciveness property of J implies that there
exists an infimizing subsequence, still denoted (ϕn) ⊂ U(ω), of the functional J and there
exist vector fields ψ ∈ H1(ω;R3), η ∈ H1(ω;R3), ζ ∈ L2(ω), and ξ ∈ L2(ω), such that, as
n→∞,

(8.1)

ϕn ⇀ ψ and a3(ϕn) ⇀ η in H1(ω;R3),

ϕn → ψ and a3(ϕn)→ η in L2(ω;R3) and a.e. in ω,

∂1ϕn ∧ ∂2ϕn ⇀ ζ and ∂1a3(ϕn) ∧ ∂2a3(ϕn) ⇀ ξ in L2(ω).

We now show that the limits appearing in (8.1) satisfy in addition the relations

(8.2)

|η| = 1 and ∂αψ · η = 0 a.e. in ω,

ζ = ∂1ψ ∧ ∂2ψ and ξ = ∂1η ∧ ∂2η a.e. in ω,

ψ = θ and η = a3 dγ-a.e. on γ0.

The first two equalities of (8.2) follow from the relations

|a3(ϕn)| = 1 and a3(ϕn)→ η a.e. in ω,

∂αϕn · a3(ϕn) = 0 and ∂αϕn · a3(ϕn) ⇀ ∂αψ · η in L2(ω).

The third equality of (8.2) follow from the convergence (see (8.1))

∂1ϕn ∧ ∂2ϕn ⇀ ζ in L2(ω),
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combined with the relations

∂1ϕn ∧ ∂2ϕn =
1

2

{
∂1(ϕn ∧ ∂2ϕn) + ∂2(∂1ϕn ∧ϕn)

}
⇀

1

2

{
∂1(ψ ∧ ∂2ψ) + ∂2(∂1ψ ∧ψ)

}
= ∂1ψ ∧ ∂2ψ in D′(ω;R3).

The fourth equality of (8.2) is proved in the same manner as the third above.
The fifth and sixth equalities of (8.2) follow from the relations

ϕn = θ and a3(ϕn) = a3 dγ-a.e. on γ0,

which hold for every n ∈ N, by using that

ϕn ⇀ ψ in H1(ω;R3)⇒ ϕn|γ0 → ψ|γ0 in L2(γ0;R3),

a3(ϕn) ⇀ η in H1(ω;R3)⇒ a3(ϕn)|γ0 → η|γ0 in L2(γ0;R3),

where the notation ψ|γ0 denotes the trace on γ0 of a vector field ψ ∈ H1(ω;R3).
(iii) Let the functions WM : ω × D+ → R and WF : ω × D+ → R be respectively defined

by

WM (y, q,uα, e) := µ∗

[
aαβ(y)uα · uβ − 2

]
+ λ∗

[ (e · q)2

a(y)
− 1
]

− (λ∗ + µ∗) log
( (e · q)2

a(y)

)
and

WF (y, q,vα,f) := K
[
µ̂∗

(
ĉαβ(y)vα · vβ − 2

)
+ λ̂∗

( (f · q)2

c(y)
− 1
)

− (λ̂∗ + µ̂∗) log
( (f · q)2

c(y)

)]
for each y ∈ ω, each (q,uα, e) ∈ D+, and each (q,vα,f) ∈ D+.

Let D := R3 × (R3)2 × R3 and let the functions W̃M : ω × D → R ∪ {+∞} and W̃F :
ω × D→ R ∪ {+∞} be defined by letting, for each y ∈ ω,

W̃M (y, q,uα, e) :=WM (y, q,uα, e) if (q,uα, e) ∈ D+,

+∞ if (q,uα, e) ∈ D− D+,

and
W̃F (y, q,vα,f) :=WF (y, q,vα,f) if (q,vα,f) ∈ D+,

+∞ if (q,vα,f) ∈ D− D+.

Let the function W : ω×R3×R9 → R∪{+∞} be defined for each (y, q,F ) ∈ ω×R3×R9

by

W(y, q,F ) = W̃M (y, q,uα, e)
√
a(y), where F := (uα, e),

and let the sequences (ηn) and (F n) be defined by

ηn := a3(ϕn) and F n := (∂αϕn, ∂1ϕn ∧ ∂2ϕn).

Since
ηn → η a.e. in ω,

F n ⇀ F := (∂αψ, ∂1ψ ∧ ∂2ψ) in L2(ω;R9),
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it is easy to see that the function W and the sequences (ηn) and (F n) satisfy the assumptions
of Theorem 1. Therefore,

(8.3)

∫
ω

W̃M (·,η, ∂αψ, ∂1ψ ∧ ∂2ψ)
√
a dy

≤ lim inf
n→∞

∫
ω

W̃M (·,a3(ϕn), ∂αϕn, ∂1ϕn ∧ ∂2ϕn)
√
a dy

= lim inf
n→∞

∫
ω

W ]
M [ϕn]

√
a dy.

Likewise, let the function W∗ : ω ×R3 ×R9 → R ∪ {+∞} be defined for each (y, q,F ) ∈
ω × R3 × R9 by

W∗(y, q,F ) = W̃F (y, q,vα,f)
√
a(y), where F := (vα,f),

and let the sequences (ηn) and (F ∗n) be defined by

ηn := a3(ϕn) and F ∗n := (∂αa3(ϕn), ∂1a3(ϕn) ∧ ∂2a3(ϕn)).

Since
ηn → η a.e. in ω,

F ∗n ⇀ F ∗ := (∂αη, ∂1η ∧ ∂2η) in L2(ω;R9),

it is easy to see that the function W∗ and the sequences (ηn) and (F ∗n) also satisfy the
assumptions of Theorem 1. Therefore,

(8.4)

∫
ω

W̃F (·,η, ∂αη, ∂1η ∧ ∂2η)
√
a dy

≤ lim inf
n→∞

∫
ω

W̃F (·,a3(ϕn), ∂αa3(ϕn), ∂1a3(ϕn) ∧ ∂2a3(ϕn))
√
a dy

= lim inf
n→∞

∫
ω

W ]
F [ϕn]

√
a dy.

(iv) Since

lim inf
n→∞

∫
ω

εW ]
M [ϕn]

√
a dy + lim inf

n→∞

∫
ω

ε3W ]
F [ϕn]

√
a dy

≤ lim inf
n→∞

∫
ω

W ]
K [ϕn]

√
a dy = lim inf

n→∞
J [ϕn] + L[ψ] <∞,

we infer from inequalities (8.3) and (8.4) that∫
ω

W̃M (·,η, ∂αψ, ∂1ψ ∧ ∂2ψ)
√
a dy <∞

and ∫
ω

W̃F (·,η, ∂αη, ∂1η ∧ ∂2η)
√
a dy <∞.

Hence, for almost all y ∈ ω,

W̃M (y,η(y), ∂αψ(y), ∂1ψ(y) ∧ ∂2ψ(y)) < +∞,

W̃F (y,η(y), ∂αη(y), ∂1η(y) ∧ ∂2η(y)) < +∞,
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which combined with the above definition of the functions W̃M and W̃F imply that, for
almost all y ∈ ω,

(η(y), ∂αψ(y), ∂1ψ(y) ∧ ∂2ψ(y)) ∈ D+,

(η(y), ∂αη(y), ∂1η(y) ∧ ∂2η(y)) ∈ D+.

Consequently, for almost all y ∈ ω,

(∂1ψ(y) ∧ ∂2ψ(y)) · η(y) > 0 and (∂1η(y) ∧ ∂2η(y)) · η(y) > 0.

Combined with the relations (see (8.2))

|η(y)| = 1 and ∂αψ(y) · η(y) = 0 a.e. in ω,

the previous inequalities show that

∂1ψ ∧ ∂2ψ 6= 0 and (∂1η ∧ ∂2η) · η > 0 a.e. in ω,

and then that

η = a3(ψ) :=
∂1ψ ∧ ∂2ψ
|∂1ψ ∧ ∂2ψ|

a.e. in ω.

Besides,

a(ψ) = |∂1ψ ∧ ∂2ψ|2 = |ζ|2 ∈ L1(ω)

and

c(ψ) = |∂1a3(ψ) ∧ ∂2a3(ψ)|2 = |ξ|2 ∈ L1(ω).

This shows that ψ ∈ U(ω). Hence the left-hand sides of the inequalities (8.3) and (8.4)
satisfy ∫

ω

W̃M (·,η, ∂αψ, ∂1ψ ∧ ∂2ψ)
√
a dy =

∫
ω

W ]
M [ψ]

√
a dy

and ∫
ω

W̃F (·,η, ∂αη, ∂1η ∧ ∂2η)
√
a dy =

∫
ω

W ]
F [ψ]

√
a dy.

Therefore inequalities (8.3) and (8.4) together imply that∫
ω

{
εW ]

M [ψ] + ε3W ]
F [ψ]

}√
a dy

≤ lim inf
n→∞

∫
ω

{
εW ]

M [ϕn] + ε3W ]
F [ϕn]

}√
a dy,

which implies in turn that

J [ψ] + L[ψ] ≤ lim inf
n→∞

(J [ϕn] + L[ϕn]) = inf
ϕ∈U(ω)

J [ϕ] + L[ψ].

Thus

J [ψ] = inf
ϕ∈U(ω)

J [ϕ],

which completes the proof. �

Remark. It is likely that the specific nonlinear shell model appearing in Theorem 5 could
be also justified by comparison with the three-dimensional model of nonlinear elasticity, by
means of Γ-convergence theory as in [6] and [7]. This objective will be addressed in a future
work.
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