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WEIGHED ESTIMATES FOR NONLINEAR ELLIPTIC PROBLEMS

WITH ORLICZ DATA

SUN-SIG BYUN AND SEUNGJIN RYU

Abstract. We study the Dirichlet problem for a divergence structure elliptic equation of
p-Laplacian type that is not necessarily of variational form. A global maximal regularity

is obtained for such a problem by proving that the gradient of the weak solution is as

globally integrable as the nonhomogeneous term in weighted Orlicz spaces under minimal
conditions on the nonlinearity and the domain. We find not only reasonable conditions

imposed on the nonlinearity and the domain but also a correct relationship between the

associated weight and Young function for such a weighted Orlicz regularity.

1. Introduction and main result

In this paper we look at the following Dirichlet problem for a divergence structure elliptic
equation of p-Laplacian type, 1 < p <∞:

(1.1)

{
div a(Du, x) = div (|F |p−2F ) in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain in Rn, n ≥ 2, with its nonsmooth boundary ∂Ω, the nonho-
mogeneous term F ∈ Lp(Ω,Rn) is given, as is the nonlinearity a = a(ξ, x) : Rn ×Rn → Rn.
We hereafter assume

(1.2)

{
γ|ξ|p−2|η|2 ≤ 〈Dξa(ξ, x)η, η〉,
|a(ξ, x)|+ |ξ||Dξa(ξ, x)| ≤ Λ|ξ|p−1

for all ξ, η ∈ Rn, almost every x ∈ Rn and some positive constants γ, Λ. Then it is well
known that there exists a unique weak solution u ∈W 1,p

0 (Ω), which means∫
Ω

a(Du, x) ·Dϕ dx =

∫
Ω

|F |p−2F ·Dϕ dx,

for all ϕ ∈W 1,p
0 (Ω), and we have the estimate

(1.3) ‖|Du|p‖L1(Ω) ≤ c ‖|F |p‖L1(Ω),

the constant c is independent of u and F .
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The main purpose in this paper is to obtain a global Calderón-Zygmund-type estimate in
weighed Orlicz spaces for the problem (1.1) under minimal assumptions on the given data.
To this end, we first introduce the Muchenhoupt weight. Let Bρ(y) denote the open ball
on Rn centered y ∈ Rn and radius ρ > 0. A weight w is a positive and locally integrable
function on Rn. Then we say that w is of class Aq for some q ∈ (1,∞), denoted by w ∈ Aq,
if

[w]q := sup

(
1

|B|

∫
B

w(x) dx

)(
1

|B|

∫
B

w(x)
−1
q−1 dx

)q−1

<∞,

where the supremum is taken over all balls B = Bρ(y). For example, wα(x) = |x|α (x ∈ Rn)
belongs to Aq class if −n < α < n(q− 1). The classes Aq are increasing as q increases, more
precisely, for 1 < α1 < α2 <∞, Aα1

⊂ Aα2
with the estimate [w]α2

≤ [w]α1
.

Given a weight w ∈ Aq and a measurable set E ⊂ Rn, we denote by

w(E) =

∫
E

w(x) dx

to mean the weighed Lebesgue measure of E. (On the other hand, |E| denotes the Lebesgue
measure of E.) A remarkable feature of the weighed Lebesgue measure for w ∈ Aq is the
following comparability with the Lebesgue measure:

(1.4)
1

c0

(
|E|
|B|

)q
≤ w(E)

w(B)
≤ c0

(
|E|
|B|

)τ0
, E ⊂ B

for some constants c0 > 1 and τ0 ∈ (0, 1) depending only on n, q and [w]q, but not on E and
B.

We now turn to Orlicz spaces. The function Φ : [0,∞) → [0,∞) is said to be a
Young function if Φ is increasing, convex, and satisfies

Φ(0) = 0, Φ(∞) = lim
ρ→+∞

Φ(ρ) = +∞, lim
ρ→0+

Φ(ρ)

ρ
= 0, lim

ρ→+∞

Φ(ρ)

ρ
= +∞.

Throughout this paper, the Young function Φ is assumed to satisfy the following ∆2 and
∇2 conditions, denoted by Φ ∈ ∆2 ∩∇2,

• (Φ ∈ ∆2) there exists c1 > 1 such that Φ(2ρ) ≤ c1Φ(ρ),
• (Φ ∈ ∇2) there exists c2 > 1 such that 2c2Φ(ρ) ≤ Φ(c2ρ),

for all ρ > 0. This ∆2 ∩ ∇2-condition is unavoidable for the type of regularity estimate
under consideration, see [22]. In particular, the ∆2 ∩ ∇2-condition ensures that the Young
function Φ grows neither too fast nor too slowly. For instance, the functions such as

Φ1(ρ) = exp(ρ2)(6∈ ∆2), Φ2(ρ) = ρ log(1 + ρ)( 6∈ ∇2)

cannot be considered here. Observe that in view of Φ ∈ ∆2∩∇2, one can find two constants
q1 and q2 with 1 < q1 ≤ q2 <∞ such that

(1.5)
1

c3
min{λq1 , λq2}Φ(ρ) ≤ Φ(λρ) ≤ c3 max{λq1 , λq2}Φ(ρ), λ, ρ ≥ 0,

the constant c3 being independent of λ and ρ.
We next define the lower index of a Young function Φ, denoted by i(Φ), by

i(Φ) = lim
λ→0+

log(hΦ(λ))

log λ
= sup

0<λ<1

log(hΦ(λ))

log λ
,
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where

hΦ(λ) = sup
ρ>0

Φ(λρ)

Φ(ρ)
(λ > 0).

Note that the index number i(Φ) is equal to the supremum of q1 satisfying (1.5).
Given a weight w and a Young function Φ, the condition w ∈ Ai(Φ) is a crucial assumption

in this work. Since Φ ∈ ∆2 ∩ ∇2, we see that 1 < i(Φ) < ∞; and so if a weight belongs
to Ai(Φ), then it has a self-improving property, i.e., there exists a small positive constant ε0
depending the index i(Φ) and the dimension n such that w ∈ Ai(Φ)−ε0 with the estimate
[w]i(Φ)−ε0 ≤ cn,i(Φ)[w]i(Φ). Consequently, we have

[w]i(Φ) ≤ [w]i(Φ)−ε0 ≤ c[w]i(Φ).

Then in view of (1.5), we discover that

λi(Φ)−ε0Φ(t) ≤ cΦ(λt), λ ≥ 1, t ≥ 0.

We refer to [14, 15] for a more in-depth discussion on the Ai(Φ) class.
We are now ready to introduce the weighted Orlicz space. For a Young function Φ ∈

∆ ∩ ∇2 and a weight w satisfying w ∈ Ai(Φ), the weighted Orlicz space LΦ
w(Ω) consists of

all measurable functions g : Ω→ R satisfying∫
Ω

Φ(|g(x)|)w(x)dx < +∞.

And LΦ
w(Ω) in fact is a Banach space equipped with the following weighted Luxemburg

norm:

‖g‖LΦ
w(Ω) = inf

{
κ > 0 :

∫
Ω

Φ

(
|g(x)|
κ

)
w(x) dx ≤ 1

}
.

Furthermore from the convexity of Φ and (1.5) we see that

1

c3
min

{
‖g‖q1

LΦ
w(Ω)

, ‖g‖q2
LΦ
w(Ω)

}
≤

∫
Ω

Φ(|g(x)|)w(x)dx

≤ c3 max
{
‖g‖q1

LΦ
w(Ω)

, ‖g‖q2
LΦ
w(Ω)

}
.(1.6)

Here the constants c3, q1 and q2 as in (1.5). The Young function Φ(ρ) = ρq (1 < q < ∞)
satisfies the ∆2 ∩ ∇2 condition and we deduce that i(Φ) = q. Therefore the weighted
Lebesgue space Lqw for w ∈ Aq is a special case of weighted Orlicz spaces LΦ

w for w ∈ Ai(Φ).
We refer the reader to [14, 15] for details concerning weighted Orlicz spaces.

We next introduce the regularity requirement on the nonlinearity a = a(ξ, x) and the
geometric assumption on the domain Ω considered here. For a ball Bρ(y), we define a
function Θ(a;Bρ(y)) on Bρ(y) by

Θ(a;Bρ(y))(x) = sup
ξ∈Rn\{0}

∣∣a(ξ, x)− aBρ(y)(ξ)
∣∣

|ξ|p−1
,

where

aBρ(y)(ξ) =

∫
−
Bρ(y)

a(ξ, x) dx =
1

|Bρ(y)|

∫
Bρ(y)

a(ξ, x) dx.

The function Θ(a;Bρ(y)) provides the measurement of the oscillation of a(ξ,x)
|ξ|p−1 in the variable

x over Bρ(y), uniformly in ξ. It follows from (1.2) that the function Θ is bounded by 2Λ.
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Definition 1. A vector field a is said to be (δ,R)-vanishing if

(1.7) sup
0<ρ≤R

sup
y∈Rn

∫
−
Bρ(y)

Θ(a;Bρ(y))(x) dx ≤ δ.

The assumption (1.7) asserts the BMO semi-norm of a(ξ,·)
|ξ|p−1 has small oscillation with

respect to x and uniformly in ξ, less than δ from being averaged over each ball. The Calderón-
Zygmund-type theory of nonlinear PDEs and systems with discontinuous nonlinearities has
been extensively studied under this type of small BMO condition (or VMO condition) in
the literature, see [1, 2, 3, 4, 6, 7, 9, 11, 13, 16, 17].

To measure the deviation of ∂Ω from being a hyperplane at each scale ρ > 0, we use the
following the so-called “Reifenberg flatness” condition.

Definition 2. A bounded domain Ω is said to be (δ,R)-Reifenberg flat if for every x ∈ ∂Ω
and every r ∈ (0, R], there exists a coordinate system {y1, . . . , yn}, which can depend on r
and x such that x = 0 in this coordinate system and that

(1.8) Br(0) ∩ {yn > δr} ⊂ Br(0) ∩ Ω ⊂ Br(0) ∩ {yn > −δr} .

Remark 1. We have a few comments about Definition 1 and 2. Knowing that the problem
(1.1) has a scaling invariance property, the constant R can be taken as 1 or any other con-
stant larger than one. On the other hand, the constant δ is still invariant under such scaling.
(See Lemma 1.) Furthermore we note that this Reifenberg flatness (1.8) is meaningful only
for small values of δ and in fact δ is to be chosen so small in the range 0 < δ < 1

2n+1

that the regularity theory under consideration is available, as we will see in Main Theorem
below. With such small δ, this flatness condition means that the deviation of ∂Ω from being
an (n− 1)-dimensional affine space is small enough at each scale r > 0. Furthermore from
(1.8), we see that Rn \ Ω enjoys the following measure density condition is obtained.

|Ω ∩Br(y)| ≥
(

1− δ
2

)n
|Br(y)| ≥

(
7

16

)n
|Br(y)|

for all y ∈ Ω and r ∈ (0, R). We refer the reader to [5, 18, 21] for details.

We now state the main result of this paper.

Main Theorem. Given a Young function Φ ∈ ∆2 ∩ ∇2, let w ∈ Ai(Φ). Suppose that

|F |p ∈ LΦ
w(Ω). Then there exists a small positive constant δ = δ(γ,Λ, n,Φ, w) such that if a

is (δ,R)-vanishing and Ω is (δ,R)-Reifenberg flat, then the weak solution u of (1.1) satisfies
|Du|p ∈ LΦ

w(Ω) and we have

(1.9) ‖|Du|p‖LΦ
w(Ω) ≤ c ‖|F |p‖LΦ

w(Ω),

the constant c depending on γ,Λ, n,Φ, w, and Ω.

Remark 2. The regularity result above is a natural extension of the previous work in [9].
More precisely, we generalize a global weighed Lq (q > p) estimate of the gradient of the weak
solution for elliptic equations of p-Laplacian type, obtained in [9], to the setting of weighed
Orlicz spaces. Our approach here for the estimate (1.9) is based on the Hardy-Littlewood
maximal function and the Calderón-Zygmund type covering lemma. This approach, intro-
duced in [12] and later developed in [3, 7, 8], is not new but it is very effective for a global es-
timate of the elliptic and parabolic problems being invariant under scaling and normalization
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like (1.1), see Lemma 1 below. We clearly point out that the so-called “Harmonic-analysis-
free” method, which was first introduced in [1] and later employed for the same problem (1.1)
in [9] is quite useful when the problem encounters a scaling deficit difficulty, as the parabolic
equations/systems of p(x, t)-Laplacian type (see, for instance, [1, 2, 6, 13]. Needless to say,
one can instead follow this influential approach from [1] to obtain the same result in Main
Theorem.

Remark 3. We note that the existence and uniqueness of a weak solution to the main
problem (1.1) is guaranteed by the assumption |F |p ∈ LΦ

w(Ω). In fact, if Φ ∈ ∆2 ∩ ∇2,
w ∈ Ai(Φ), and g ∈ LΦ

w(Ω), then g ∈ L1(Ω) and we have the estimate

(1.10)

∫
Ω

|g(x)| dx ≤ c

[(∫
Ω

Φ(|g(x)|)w(x)dx

) 1
q1

+

(∫
Ω

Φ(|g(x)|)w(x)dx

) 1
q2

]
,

where q1 and q2 are defined as in (1.5), see [20].

2. Auxiliary results

We begin this section with the following invariance property under normalization and
scaling. The proof follows by direct computations (for further details, see [9, 10]).

Lemma 1. Let u be the weak solution to the problem (1.1). Assume that the nonlinearity
a(ξ, x) satisfies (1.2) and is (δ,R)-vanishing. For each λ > 1 and 0 < r < 1, define the
rescaled maps

ã(ξ, x) =
a(λξ, rx)

λp−1
, Ω̃ =

{
1

r
x : x ∈ Ω

}
, ũ(x) =

u(rx)

λr
, F̃ (x) =

F (rx)

λ
.

Then

(1) ũ ∈W 1,p
0 (Ω̃) is the weak solution of

div ã(Dũ, x) = div (|F̃ |p−2F̃ ) in Ω̃,

(2) ã(ξ, x) satisfies the structural assumption (1.2) with the same constants γ and Λ,

(3) ã is (δ, Rr )-vanishing and Ω̃ is (δ, Rr )-Reifenberg flat.

We now recall the Hardy-Littlewood maximal function and its basic properties. Let g be
a locally integrable function on Rn. Then the Hardy-Littlewood maximal function of g is
given by

(Mg)(x) = sup
ρ>0

∫
−
Bρ(x)

|g(y)| dy = sup
ρ>0

1

|Bρ(x)|

∫
Bρ(x)

|g(y)| dy.

If g is defined only on a bounded domain U , we define its restricted maximal function as

MUg =M(gχU ),

where χU is the standard characteristic function on U . The maximal function operator
satisfies the so-called weak (1,1) inequality. More specifically, there exists a positive constant
c = c(n) such that

(2.1)
∣∣{x ∈ Rn : (Mg)(x) > λ}

∣∣ ≤ c

λ

∫
Rn
|g(x)| dx
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for any λ > 0. As the well-known Muchenhoupt characterization of the Aq-weight, the
Hardy-Littlewood maximal operator is bounded from the weighted Lebesgue space Lqw(Rn)
to itself and the Ai(Φ)-weight can be classified as follows. Given a Young function Φ ∈
∆2 ∩ ∇2, the weight w belongs to the Ai(Φ) class if and only if there exists c = c(n,Φ, w)
such that

(2.2)

∫
Rn

Φ
(
Mg(x)

)
w(x)dx ≤ c

∫
Rn

Φ
(
|g(x)|

)
w(x)dx,

for all g ∈ LΦ
w(Rn) with compact support in Rn. We refer to [14, 15] and the references

therein.

We will use the following simple result.

Lemma 2. Given a Young function Φ ∈ ∆2 ∩ ∇2, let w ∈ Ai(Φ). Assume that g is a
nonnegative and measurable function defined on a bounded domain Ω in Rn. Let θ > 0 and
λ > 1 be constants. Then

g ∈ LΦ
w(Ω) ⇐⇒ S :=

∑
k≥1

Φ
(
λk
)
w
({

x ∈ Ω : g(x) > θλk
})

<∞

and

(2.3)
1

c
S ≤

∫
Ω

Φ
(
g(x)

)
w(x) dx ≤ c(w(Ω) + S),

the positive constant c depending only on θ, λ, Φ, and w.

The following version of the Calderón-Zygmund type covering lemma is used to prove the
main theorem. The proof can be found in [4, Lemma 5.4] or [19, Lemma 3.4] with slight
modifications.

Lemma 3. Given a Young function Φ ∈ ∆2 ∩ ∇2, let w ∈ Ai(Φ). Let Ω be a bounded
(δ, 1)-Reifenberg flat domain for some small δ > 0 and let C and D be measurable sets with
C ⊂ D ⊂ Ω. Suppose that there exists small ε > 0 such that

(1) for any y ∈ Ω, w(C ∩B1(y)) < εw(B1(y)),
(2) for each y ∈ Ω and r ∈ (0, 1),

if w(C ∩Br(y)) ≥ εw(Br(y)), then Br(y) ∩ Ω ⊂ D.

Then

w(C) ≤ c4 εw(D),

the constant c4 depending only on n,Φ, and w.

We remark that the constant c4 is depending on 1
1−δ . Since δ is to be selected less than

1
2n+1 , c4 is bounded by some universal constant being independent of δ.

From now on, for simplicity and clearance, the symbol c denotes a universal constant
that can be explicitly calculated in terms of known quantities. This constant may vary in
different occurrences. The relevant connections with known quantities will be specified, if
necessary.
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3. Global Weighted Orlicz Estimates

In this section, we will complete the proof of Main Theorem. The following lemma is a
crucial ingredient for its proof.

Lemma 4. Let u ∈ W 1,p
0 (Ω) be the weak solution of (1.1). Then there exists a constant

N = N(γ,Λ, n, p) > 1 such that for each 0 < ε < 1 fixed, one can select small δ =
δ(ε, γ,Λ, n, p,Φ, w) ∈ (0, 1

8 ) such that if a is (δ, 42)-vanishing, Ω is (δ, 42)-Reifenberg flat,
and if for 0 < r < 1 and y ∈ Ω, Br(y) satisfies

(3.1) w ({x ∈ Ω :M(|Du|p) > Np} ∩Br(y)) ≥ εw(Br(y)),

then we have

(3.2) Br(y) ∩ Ω ⊂ {x ∈ Ω :M(|Du|p) > 1} ∪ {x ∈ Ω :M(|F |p) > δp} .

For the proof, we need the following comparison estimates. We start with interior esti-
mates in B6 ⊂⊂ Ω.

Lemma 5. (See [9, 11].) Let u ∈W 1,p(B6) be a weak solution of

div a(Du, x) = div (|F |p−2F ) in B6

with ∫
−
B6

|Du|p dx ≤ 1.

Then there exists a constant n1 = n1(γ,Λ, n, p) > 1 so that for any ε ∈ (0, 1) fixed, one can
find a small positive constant δ = δ(ε, γ,Λ, n, p) such that if∫

−
B6

Θ
(
a;B6

)
dx ≤ δ and

∫
−
B6

|F |p dx ≤ δp

hold for such small δ, then there exists a weak solution v ∈W 1,p(B4) of

div aB4
(Dv) = 0 in B4

such that ∫
−
B2

|D(u− v)|p dx ≤ εp and ‖Dv‖L∞(B3) ≤ n1.

The next lemma is a boundary version of Lemma 5. We use the following notation.

B+
r = Br ∩ {xn > 0}, Ωr = Br ∩ Ω, Tr = Br ∩ {xn = 0}, ∂wΩr = ∂Ω ∩Br.

Lemma 6. (See [9].) Let u be a weak solution of{
div a(Du, x) = div (|F |p−2F ) in Ω6,

u = 0 on ∂wΩ6,

with ∫
−

Ω6

|Du|p dx ≤ 1.

Then, there exists a constant n2 = n2(γ,Λ, n, p) > 1 so that for any ε ∈ (0, 1) fixed, one can
find a small positive constant δ = δ(ε, γ,Λ, n, p) such that if

B+
6 ⊂ Ω6 ⊂ B6 ∩ {xn > −12δr},
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−
B+

6

Θ
(
a;B+

6

)
dx ≤ δ and

∫
−

Ω6

|F |p dx ≤ δp

hold for such small δ, then there exists a weak solution v of{
div aB+

4
(Dv) = 0 in B+

4 ,

v = 0 on T4,

such that ∫
−

Ω2

|D(u− v)|p dx ≤ εp and ‖Dv‖L∞(Ω3) ≤ n2

where v is the zero extension of v from B+
4 to B4.

Now, we are ready to prove Lemma 4.

Proof of Lemma 4. We argue by contradiction. Suppose that Br(y) satisfies (3.1) but the
claim (3.2) is false. Then there exists a point y1 ∈ Br(y) ∩Ω such that for every ρ > 0, one
has

(3.3)
1

|Bρ(y1)|

∫
Ω∩Bρ(y1)

|Du|p dx ≤ 1 and
1

|Bρ(y1)|

∫
Ω∩Bρ(y1)

|F |p dx ≤ δp.

Case 1: B6r(y) ⊂⊂ Ω.
Without loss of generality, we may assume that y = 0. Since B6r ⊂ B7r(y1) ∩ Ω, it follows
from (3.3) that∫

−
B6r

|Du|p dx ≤ 1

|B6r|

∫
Ω7r(y1)

|Du|p dx

≤ |B7r(y1)|
|B6r|

1

|B7r(y1)|

∫
Ω7r(y1)

|Du|p dx ≤ 2n.(3.4)

Similarly, we have

(3.5)

∫
−
B6r

|F |p dx ≤ 2nδp.

Consider the rescaled maps

(3.6) ã(ξ, x) =
a(2

n
p ξ, rx)

2
n(p−1)

p

, ũ(x) =
u(rx)

2
n
p r

, F̃ (x) =
F (rx)

2
n
p

for x ∈ B6 ⊂ Ω̃ and ξ ∈ Rn. In light of Lemma 1 and (3.4)-(3.6), we are under the hypotheses
of Lemma 5, which implies that after scaling back, there exists v ∈W 1,p(B4r) such that

(3.7) ‖Dv‖L∞(B3r) ≤ n1

for some n1 = n1(γ,Λ, n, p) > 1 and

(3.8)

∫
−
B2r

|D(u− v)|p dx ≤ η,

where η ∈ (0, 1) is to be determined as below.

Now we let N1 = max
{

2n1, 2
n
p

}
. Then by (3.7), we discover that

(3.9)
{
x ∈ Br :M(|Du|p) > Np

1

}
⊂
{
x ∈ Br :MB4r (|D(u− v)|p) > np1

}
.
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Using (3.9), weak (1-1) estimate (2.1) and (3.8), we have

1

|Br|
∣∣{x ∈ Br :M(|Du|p) > Np

1

}∣∣ ≤ 1

|Br|
∣∣{x ∈ Br :MB4r (|D(u− v)|p) > np1

}∣∣
≤ c

∫
−
B4r

|D(u− v)|p dx

≤ cη.

Consequently, we conclude∣∣{x ∈ Ω :M(|Du|p) > Np
1

}
∩Br

∣∣ ≤ cη|Br|
for some c = c(γ,Λ, n, p) > 0. We next recall (1.4) to find

w
({
x ∈ Ω :M(|Du|p) > Np

1

}
∩Br

)
w
(
Br
) ≤ c0

(∣∣{x ∈ Ω :M(|Du|p) > Np
1

}
∩Br

∣∣
|Br|

)τ0
≤ cητ0 ,

for some c = c(λ,Λ, n, p, i(Φ), [w]i(Φ)) > 0. And so

w
({
x ∈ Ω :M(|Du|p) > Np

1

}
∩Br

)
≤ cητ0w

(
Br
)
< εw

(
Br
)
,

by taking η > 0 so small that the last inequality holds. This contradicts (3.1).

Case 2: B6r(y) * Ω.
In view of the (δ, 42)-Reifenberg flatness of the domain Ω and (δ, 42)-vanishing property of
the nonlinearity a, there exists a point y0 ∈ ∂Ω ∩ B6r(y) and a new coordinate system,
depending on the point y0 and the scale r ∈ (0, 1), whose variables we denote by z =
(z1, . . . , zn−1, zn), such that in this new coordinate system the origin is y0 + δ0

−→n0 for some
small δ0 > 0 and some inward unit vector −→n0 at y0, y = z0, y1 = z1,

(3.10) B+
42r ⊂ Ω42r(= Ω ∩B42r) ⊂ {z ∈ B42r : zn > −84rδ},

and

(3.11)

∫
−
B+

42r

Θ
(
a, B+

42r

)
(z) dz ≤ δ.

Note that Ω ∩B42r ⊂ Ω ∩B49r(z1). Then by (3.3), we have

(3.12)

∫
−

Ω42r

|Du|p dz ≤ 2

(
49

42

)n ∫
−

Ω∩B49r(z1)

|Du|p dz < 2n+1.

Similarly,

(3.13)

∫
−

Ω42r

|F |p dz ≤ 2n+1δp.

As for the Case 1, we apply Lemma 1 with the scale 7r and λ = 2
n+1
p . Utilizing (3.10)-

(3.13), we see that we are under the hypotheses of Lemma 6, and thus there exists a function
v ∈W 1,p(Ω28r) satisfying ∫

−
Ω14r

|D(u− v)|p dz ≤ η∗ε,

where η∗ is to be selected as below, and

‖Dv‖L∞(Ω21r) ≤ n2,
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where n2 is a universal constant depending on γ,Λ, n, and p.

Writing N2 = max
{

2n2, 2
n+1
p

}
, we conclude, as in the Case 1, that∣∣{z ∈ Ω :M(|Du|p) > Np

2

}
∩B7r

∣∣
|B7r|

≤ cη∗ε,

which implies that after scaling back,∣∣{x ∈ Ω :M(|Du|p) > Np
2

}
∩Br(y)

∣∣ ≤ cη∗ε|Br(y)|

The rest of proof is very similar to that of the Case 1, and so we omit it here. Finally, we
take N = max{N1, N2} to complete the proof of Lemma 4. �

We are now all set to prove the main theorem. In the proof, Lemma 3 and 4 will play an
important role.

Proof of Main Theorem. We first fix N , ε, and the corresponding δ given by Lemma 4. We
first claim that

(3.14) S =
∑
k≥1

Φ
(
Npk

)
w
({
x ∈ Ω :M(|Du|p) > Npk

})
<∞,

under the assumption

(3.15) ‖|F |p‖LΦ
w(Ω) ≤ δp.

To employ Lemma 3, we write

C = {x ∈ Ω :M(|Du|p) > Np}

and

D = {x ∈ Ω :M(|Du|p) > 1} ∪ {x ∈ Ω :M(|F |p) > δp}.

Then clearly C ⊂ D ⊂ Ω. We next fix any y ∈ Ω. Then it follows from (1.4), weak (1-1)
estimate (2.1) and standard Lp estimate with zero boundary data (1.3) that

w(C ∩B1(y))

w(B1(y))
≤ c0

(
|C ∩B1(y)|
|B1(y)|

)τ0
≤ c |C|τ0

≤ c
(∫

Ω

|Du|p dx
)τ0
≤ c

(∫
Ω

|F |p dx
)τ0

.

But then by (1.10), (1.6) and (3.15), we have∫
Ω

|F |p dx ≤ c

[(∫
Ω

Φ(|F |p)w(x)dx

) 1
q1

+

(∫
Ω

Φ(|F |p)w(x)dx

) 1
q2

]
≤ c

(
‖|F |p‖LΦ

w(Ω)

) q1
q2 ≤ cδ

pq1
q2 .

Consequently, we conclude

w(C ∩B1(y)) ≤ cδ
pq1τ0
q2 w(B1(y)).
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And so the first condition of Lemma 3 holds by taking δ further small enough. On the other
hand, the second condition of Lemma 3 follows from Lemma 4. As a consequence, we have

(3.16)

w
(
{x ∈ Ω : M(|Du|p) > Npk}

)
≤ c4 εw

(
{x ∈ Ω :M(|Du|p) > 1}

)
+ c4 εw

({
x ∈ Ω :M(|F |p) > δ2Np(k−i)}).

Thanks to Lemma 1, we apply the same estimate (3.16) can be obtained for ( uN ,
F
N ),

( u
N2 ,

F
N2 ), ( u

N3 ,
F
N3 ), . . ., inductively, and so deduce the following power decay estimate.

w
(
{x ∈ Ω : M(|Du|p) > Npk}

)
≤ εk1w

(
{x ∈ Ω :M(|Du|p) > 1}

)
+

k∑
i=1

εi1w
({
x ∈ Ω :M(|F |p) > δpNp(k−i)}),

for each k = 1, 2, . . ., where ε1 = c4ε. Thus

S =
∑
k≥1

Φ(Npk)w
({
x ∈ Ω :M(|Du|p) > Npk

})
≤

∑
k≥1

Φ(Npk)εk1w ({x ∈ Ω :M(|Du|p) > 1})

+
∑
k≥1

Φ(Npk)

k∑
i=1

εi1w
({
x ∈ Ω :M(|F |p) > δ2Np(k−i)

})
=: S1 + S2.

Since Φ ∈ ∆2, there exists a constant µ1, depending only on p,N, and c1, such that Φ(Np) ≤
µ1Φ(1), and so

Φ(Npk) ≤ µk1Φ(1) (k = 1, 2, 3, · · · ) ,
thereby estimate S1 as follow.

S1 ≤
∑
k≥1

(
Φ(1)µk1ε

k
1w(Ω)

)
≤ c

∑
k≥1

(µ1ε1)
k
.

On the other hand,

S2 =
∑
k≥1

Φ
(
Np(k−i)Npi

) k∑
i=1

εi1w
({
x ∈ Ω :M(|F |p) > δpNp(k−i)

})
≤
∑
i≥1

∑
k≥i

Φ
(
Np(k−i)

)
µi1ε

i
1w
({
x ∈ Ω :M(|F |p) > δpNp(k−i)

})
=
∑
i≥1

(µ1ε1)
i
∑
k≥i

Φ
(
Np(k−i)

)
w
({
x ∈ Ω :M(|F |p) > δpNp(k−i)

})
=
∑
i≥1

(µ1ε1)
i
∑
j≥0

Φ
(
Npj

)
w

({
x ∈ Ω :M

(∣∣∣∣Fδ
∣∣∣∣p) > Npj

})
.
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We now recall (2.3), (2.2)-(1.6) and (3.15) to find

S2 ≤ c
∑
i≥1

(µ1ε1)
i
∫

Ω

Φ

(
M
(∣∣∣∣Fδ

∣∣∣∣p))w(x)dx

≤ c
∑
i≥1

(µ1ε1)
i

∥∥∥∥ |F |pδp
∥∥∥∥q1
LΦ
w(Ω)

≤ c
∑
i≥1

(µ1ε1)
i
.

Therefore, we derive

S ≤ c
∑
k≥1

(µ1ε1)
k

for ε1 = c4ε, as in Lemma 3.
We now select a sufficiently small ε > 0, in order to get

µ1ε1 < 1.

We then can find accordingly a small δ = δ(γ,Λ, n, p,Φ, w) > 0 from Lemma 4. Therefore
(3.14) is now claimed under the smallness assumption (3.15).

We next recall Lemma 2 and (1.6) to conclude

‖|Du|p‖LΦ
w(Ω) ≤ c

under the assumption (3.15).
Now we need to drop the assumption (3.15). To this end, we consider

u1 =
δu

p

√
‖|F |p‖LΦ

w(Ω) + σ
and F1 =

δF

p

√
‖|F |p‖LΦ

w(Ω) + σ

in place of u and F , respectively.
Clearly, we have ‖|F1|p‖LΦ

w(Ω) ≤ δp, and so ‖|Du1|p‖LΦ
w(Ω) ≤ c. We then let σ → 0 to find

the required estimate

‖|Du|p‖LΦ
w(Ω) ≤ c ‖|F |p‖LΦ

w(Ω).

This completes the proof.
�
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