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ASYMPTOTIC BEHAVIOUR OF THE SOLUTIONS OF NONLOCAL

p-LAPLACE EQUATIONS DEPENDING ON THE Lp NORM OF THE

GRADIENT

MICHEL CHIPOT AND TETIANA SAVITSKA

Abstract. In this paper we extend some results regarding the asymptotic behaviour of

a class of nonlocal nonlinear parabolic problems, which have been previously considered

in [7]. In particular, we obtain a local stability result for isolated local minima of the
energy functional associated to this class of problems.

1. Introduction

In this paper we consider the asymptotic behaviour of the solution u = u(x, t) of the
following problem

(1.1)


ut −∇ · a(‖∇u‖pp)|∇u|p−2∇u = f in Ω× (0, T ),

u = 0 on Γ× (0, T ),

u(·, 0) = u0 in Ω,

where Ω is a bounded open set of Rn, n ≥ 1 with Lipschitz boundary Γ. In what follows we
assume a′ is continuous and that there exist constants λ, Λ such that

(1.2) 0 < λ ≤ a(µ) ≤ Λ ∀µ ∈ R.

By | · |p we denote the Lp(Ω)-norm, 2 ≤ p < +∞ and we assume

(1.3) f = f(x) ∈ L2(Ω), u0 ∈W 1,p
0 (Ω),

1

p
+

1

q
= 1.

The motivation to study this type of problems can be found in [1], [3] –[8] and the references
therein. This problem has been considered in our previous work [7], where the existence
and uniqueness of a weak solution has been obtained and the question of the asymptotic
behaviour has been addressed. In particular, we know that if the stationary problem has
a unique solution, then the solution of problem (1.1) converges to this unique equilibrium.
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However, it has been shown that the corresponding stationary problem may have from one
up to a continuum of solutions, which are also critical points of the energy functional:

(1.4) E(u) =
1

p
A

(∫
Ω

|∇u|pdx
)
−
∫

Ω

fudx

with

(1.5) A(z) =

∫ z

0

a(s)ds.

Furthermore, in [7] it was shown that the critical points can be either local minima or saddle
points of the energy functional (1.4), depending on the function a (see Figure 1.1 and (4.3)).
We already know [7] that an isolated global minimum of E is asymptotically stable. The
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Figure 1.1

main result of this paper is the following theorem:

Theorem 1.1. Under the assumptions above the isolated local minimizers of the energy E
defined by (1.4) are asymptotically stable.

The paper is organized as follows. In the next Section we formulate and prove some
auxiliary lemmas, which are used throughout the paper. In Section 3 existence, uniqueness
of a strong solution and its convergence to a stationary solution is shown. In the last Section
we describe the proof of Theorem 1.1.

2. Some auxiliary lemmas

Lemma 2.1. Let g : R+ → R+ be a continuous function with g(x) > 0 ∀x > 0 or such that

(2.1) ∀α > 0 small, sup
[α,2α]

g = Cα > 0.

Let y, h be nonnegative functions, y continuous such that

(2.2)

∫ +∞

0

y(s)ds,

∫ +∞

0

h(s)ds < +∞,

y(t)− y(s) ≤
∫ t

s

(g(y(ξ)) + h(ξ))dξ, ∀s < t.
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Then it holds that

lim
t→+∞

y(t) = 0.

Proof . From the condition

∫ +∞

0

y(s)ds we have that lim inf
t→+∞

y(t) = 0.

Suppose that lim sup
t→+∞

y(t) > 0 and choose α such that lim sup
t→+∞

y(t) > 2α. By the mean value

theorem one can find a sequence of disjoint intervals (tn, t
′
n), tn → +∞ such that

y(tn) = α ≤ y(t) ≤ 2α = y(t′n) ∀t ∈ (tn, t
′
n).

Then from the last inequality of (2.2) and (2.1) it holds that

α = y(t′n)− y(tn) ≤
∫ t′n

tn

g(y(s))ds+

∫ t′n

tn

h(s)ds ≤ Cα(t′n − tn) +

∫ t′n

tn

h(s)ds.

For n ≥ n0 large enough, by (2.2),

∫ t′n

tn

h(s)ds ≤ α

2
and from above we get

t′n − tn ≥
α

2Cα
.

It follows that ∫ +∞

tn0

y(s)ds ≥
∑
n≥n0

∫ t′n

tn

y(s)ds ≥
∑
n≥n0

α2

2Cα
= +∞

and a contradiction. �

Lemma 2.2. Let p ≥ 2, a, b ∈ R. Then∫ 1

0

(1− s)|a+ sb|p−2|b|2ds ≥ 1

8(18)
p
2

|b|p.

Proof .

(i) Let us first assume that |a| ≥ |b|. Then we have that

|a+ sb| ≥ |a| − s|b| ≥ |b| − s|b| = (1− s)|b|, s ∈ [0, 1].

Consider now∫ 1

0

(1− s)|a+ sb|p−2|b|2ds ≥
∫ 1

0

(1− s)p−1|b|pds =
|b|p

p

and the statement of the lemma holds.
(ii) Let now |a| < |b|. Then we see

|a+ sb| ≤ |a|+ s|b| < (1 + s)|b| ≤ 2|b| s ∈ [0, 1].

Hence,∫ 1

0

(1− s)|a+ sb|p−2|b|2ds =

∫ 1

0

(1− s) |a+ sb|p

|a+ sb|2
|b|2ds ≥ 1

4

∫ 1

0

(1− s)|a+ sb|pds.
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Since

∫ 1

0

2(1− s)ds = 1 and X → X
p
2 is convex by Jensens’s inequality we get

∫ 1

0

(1− s)(|a+ sb|2)
p
2 ds ≥ 1

2

(∫ 1

0

2(1− s)(|a|2 + 2sab+ s2|b|2)ds

) p
2

=
1

2

(
|a|2 +

2

3
ab+

1

6
|b|2
) p

2 ≥ 1

2

(
|a|2 − 2

3
|a||b|+ 1

6
|b|2
) p

2

.

Using the Young inequality ab ≤ 3a2

2
+
b2

6
and combining the two inequalities above

we obtain the statement of the lemma.

�

3. Asymptotic behaviour and regularity

Theorem 3.1. Let the assumptions above hold. Then for any T > 0 there exists a unique
L2-strong solution u of (1.1) such that

(3.1) u ∈ C([0, T ];W 1,p
0 (Ω)), ut, ∇ · |∇u|p−2∇u ∈ L2(0, T ;L2(Ω)).

Moreover, u(t) = u(·, t) converges to a stationary point in W 1,p
0 (Ω) when t goes to infinity.

Proof . Consider ϕ1, . . . , ϕn, . . . a basis in W 2,2(p−1)(Ω) such that

(3.2) ϕi ∈ Hs
0(Ω), (ϕi, v)Hs

0 (Ω) = µi(ϕi, v)L2(Ω) ∀v ∈ Hs
0(Ω),

where s is chosen in such a way that Hs
0(Ω) ⊂W 2,2(p−1)(Ω) (see [11]). We will suppose that

ϕi are orthonormal in L2(Ω) (W 2,2(p−1)(Ω) ⊂ L2(Ω), since p ≥ 2). If u0 =
∑
i

βiϕi consider

un(t) =

n∑
i=1

γi(t)ϕi

solution to

(3.3)



∫
Ω

u′nvdx+ a(‖∇un‖pp)
∫

Ω

|∇un|p−2∇un∇vdx =

∫
Ω

fvdx

∀v ∈ [ϕ1, . . . , ϕn],

un(0) =

n∑
i=1

βiϕi,
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where [ϕ1, . . . , ϕn] is the space spanned by ϕ1, . . . , ϕn. Taking v = ϕj and using the fact
that the ϕi’s are orthonormal we see that (3.3) is equivalent to the Cauchy problem

(3.4)



γ′j(t) = −a
(∥∥∥ n∑

i=1

γi(t)∇ϕi
∥∥∥p
p

)∫
Ω

∣∣∣ n∑
i=1

γi(t)∇ϕi
∣∣∣p−2 n∑

i=1

γi(t)∇ϕi∇ϕjdx

+

∫
Ω

fϕjdx, ∀j = 1, . . . n,

γj(0) = βj , ∀j = 1, . . . n.

By the existence theorem for ordinary differential equations this Cauchy problem possesses
a solution γj ∈ C2([0, δ)), δ > 0. Taking v = u′n in (3.3) we get

(3.5)

∫
Ω

|u′n|2dx+
d

dt
E(un(t)) = 0,

where E is defined by (1.4). By integration we obtain

(3.6)

∫ t

0

∫
Ω

|u′n|2dxdt = E(un(0))− E(un(t)) ≤ C,

since E is uniformly bounded from below. Indeed, from (1.4) using (1.2), Hölder’s and

Young’s inequalities and the fact that W 1,p
0 (Ω) ⊂ L2(Ω) for p ≥ 2 we have that

E(un) ≥ λ

p
‖∇un‖pp − |f |2|un|2 ≥

λ

p
‖∇un‖pp − C|f |2‖∇un‖p ≥ −

(C|f |2)q

qλq−1

Hence, (3.6) implies that

(3.7) u′n ∈ L2(0, T ;L2(Ω)) = L2(QT ), QT = (0, T )× Ω.

We can now differentiate (3.3) with respect to t and since

d

dt
|∇un|p =

d

dt

(
|∇un|2

) p
2 =

p

2

(
|∇un|2

) p
2−1 d

dt
|∇un|2

=
p

2
|∇un|p−22∇un∇u′n = p|∇un|p−2∇un∇u′n

we get∫
Ω

u′′nvdx+ pa′(‖∇un‖pp)
∫

Ω

|∇un|p−2∇un∇u′ndx
∫

Ω

|∇un|p−2∇un∇vdx

+ a(‖∇un‖pp)
∫

Ω

(p− 2)|∇un|p−4∇un∇u′n∇un∇v + |∇un|p−2∇u′n∇vdx = 0.

Taking v = u′n and noting that the last term is nonnegative we get

(3.8)
1

2

d

dt

∫
Ω

|u′n|2dx ≤ −pa′(‖∇un‖pp)
(∫

Ω

|∇un|p−2∇un∇u′ndx
)2

.

From the first equation in (3.3) written with v = u′n we have

a(‖∇un‖pp)
∫

Ω

|∇un|p−2∇un∇u′ndx =

∫
Ω

fu′ndx−
∫

Ω

|u′n|2dx
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and from (3.8) follows

1

2

d

dt

∫
Ω

|u′n|2dx ≤ p
|a′(‖∇un‖pp)|
a2(‖∇un‖pp)

(∫
Ω

fu′ndx−
∫

Ω

|u′n|2dx
)2

.

Since E(un) is uniformly bounded so is ‖∇un‖pp. Due to the fact that a ∈ C1 from Hölder’s
inequality we obtain

(3.9)
1

2

d

dt

∫
Ω

|u′n|2dx ≤ C
(∫

Ω

|f |2dx+

∫
Ω

|u′n|2dx
)∫

Ω

|u′n|2dx.

Denote by yn(t) = |u′n(t)|22. Integrating (3.9) we get

yn(t)− yn(s) ≤ 2C

∫ t

s

(
|f |22 + yn(ξ)

)
yn(ξ)dξ.

Passing to the limit in (3.6) as t→ +∞ we obtain that∫ +∞

0

yn(s)ds < +∞.

Hence, since g(x) = 2C(|f |22x+ x2) > 0 on x > 0 from Lemma 2.1 we derive

(3.10) yn(t)→ 0 as t→ +∞.

Thus yn remains bounded in time. Remark that

∇ · |∇u|p−2∇u = |∇u|p−2∆u+ (p− 2)|∇u|p−4
n∑

i,j=1

uxiuxjuxixj .

Applying twice the Cauchy-Schwarz inequality we get

(3.11)

∫
Ω

|∇ · |∇u|p−2∇u|2dx ≤ 1

2

(∫
Ω

|∇u|2p−4|∆u|2dx

+ (p− 2)2

∫
Ω

|∇u|2p−4
n∑

i,j=1

u2
xixj

dx
)
.

From Hölder’s inequality with the exponents p−1
p−2 , p− 1 we get that∫

Ω

|∇u|2p−4|∆u|2dx ≤
(∫

Ω

|∇u|2(p−1)dx

) p−2
p−1

(∫
Ω

|∆u|2(p−1)dx

) 1
p−1

.

We can estimate the second term in (3.11) in a similar way. Thus, since ϕj ∈W 2,2(p−1)(Ω),
we can multiply the first equation in (3.4) by ϕj∇ · |∇un|p−2∇un, then integrating over Ω
and summing in j we get∫

Ω

∇ · |∇un|p−2∇unu′ndx = a(‖∇un‖pp)
n∑
j=1

(∫
Ω

∇ · |∇un|p−2∇unϕjdx
)2

+

n∑
j=1

∫
Ω

fϕjdx

∫
Ω

∇ · |∇un|p−2∇unϕjdx.
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Since ϕ1, . . . , ϕn are orthonormal in L2(Ω) the equality above can be written as∫
Ω

|∇un|p−2∇un∇u′ndx+ a(‖∇un‖pp)|Pn(∇ · |∇un|p−2∇un)|22

= −
∫

Ω

Pnf∇ · |∇un|p−2∇undx,

where Pn denotes a projection operator from L2(Ω) onto [ϕ1, . . . , ϕn]. Then from (1.2),
Hölder’s and Young’s inequalities we get

1

p

d

dt
‖∇un‖pp + λ|Pn(∇ · |∇un|p−2∇un)|22 ≤ |(f, Pn(∇ · |∇un|p−2∇un))|

≤ |f |2|Pn(∇ · |∇un|p−2∇un)|2 ≤
|f |22
2λ

+
λ|Pn(∇ · |∇un|p−2∇un)|22

2
.

Therefore, we obtain

1

p

d

dt
‖∇un‖pp +

λ

2
|Pn(∇ · |∇un|p−2∇un)|22 ≤

|f |22
2λ

And after integration in time

(3.12)
1

p
‖∇un‖pp +

λ

2

∫ t

0

|Pn(∇ · |∇un|p−2∇un)|22dt ≤
1

p
‖∇u0‖pp +

|f |22T
2λ

.

From (3.7), (3.12) follow that we can find a subsequence of n such that

u′n ⇀ u′ in L2(QT ),

Pn(∇ · |∇un|p−2∇un) ⇀ χ in L2(QT ).

One can prove (see a proof of existence for a weak solution [7]) that

∇ · |∇un|p−2∇un ⇀ ∇ · |∇u|p−2∇u in Lq(0, T ;W−1,q(Ω)) ⊂ Lq(0, T ;H−s(Ω)),

‖∇un‖pp → ‖∇u‖pp a.e. t.

Let w ∈ L2(Ω), then Pnw ∈ [ϕ1, . . . , ϕn]. Taking now in (3.3) v = Pnw and passing to the
limit (Pnw → w in L2(Ω), see [12]), we obtain∫

Ω

u′wdx− a(‖∇u‖pp)
∫

Ω

χwdx =

∫
Ω

fwdx ∀w ∈ L2(Ω) in D′(0, T ).

Remark that for w ∈ Hs
0(Ω) it holds that Pnw → w in Hs

0(Ω). Indeed,

w =

∞∑
j=1

(ϕj , w)ϕj

and due to (3.2) we get that

‖w‖2Hs
0 (Ω) =

∞∑
j=1

|(ϕj , w)|2µj < +∞.

Then

‖Pnw − w‖2Hs
0 (Ω) =

∥∥∥∥∥∥
∞∑

j=n+1

(ϕj , w)ϕj

∥∥∥∥∥∥
2

Hs
0 (Ω)

=

∞∑
j=n+1

|(ϕj , w)|2µj → 0.
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Therefore for w ∈ Hs
0(Ω), ϕ ∈ D(0, T ) we obtain∫ T

0

∫
Ω

χwϕdxdt = lim
n→+∞

∫ T

0

∫
Ω

Pn(∇ · |∇un|p−2∇un)wϕdxdt

= lim
n→+∞

∫ T

0

∫
Ω

∇ · |∇un|p−2∇unPnwϕdxdt =

∫ T

0

∫
Ω

∇ · |∇u|p−2∇uwϕdxdt.

Hence, χ = ∇ · |∇u|p−2∇u and u is a solution to (1.1) and

ut − a(‖∇u‖pp)∇ · |∇u|p−2∇u = f in L2(Ω).

It remains to show that u ∈ C([0, T ];W 1,p
0 (Ω)). By rescaling the time in the following way,

setting

(3.13) α(t) =

∫ t

0

a(‖∇u(·, s)‖pp)ds,

we reduce solving the problem (1.1) to solving the problem (see [9], [7]):

(3.14)


wt −∇ · |∇w|p−2∇w =

f

a(‖∇w‖pp)
in Ω× (0, α(T )),

w = 0 on Γ× (0, α(T )),
w(·, 0) = u0 in Ω,

where w(x, α(t)) = u(x, t). Then (we keep denoting the solution by u) multiplying the first
equation in (3.14) by ut and integrating over Ω we get∫

Ω

|ut|2dx+

∫
Ω

|∇u|p−2∇u∇utdx =

∫
Ω

fut
a(‖∇u(·, t)‖pp)

dx.

Using (1.2) and Hölder’s and Young’s inequalities we obtain

|ut|22 +
1

p

d

dt
‖∇u‖pp ≤

1

λ
|f |2|ut|2 ≤

|f |22
2λ2

+
|ut|22

2
.

Therefore, it holds that
d

dt
‖∇u‖pp ≤ C|f |22.

Integrating from t0 to t we deduce

‖∇u(t)‖pp ≤ ‖∇u(t0)‖pp + C|f |22(t− t0).

Hence, letting t→ t0 we get

(3.15) lim sup
t→t0

‖∇u(t)‖p ≤ ‖∇u(t0)‖p.

Recall that
‖∇u(t)‖p ≤ C ∀t ≥ 0,

thus for a subsequence

∇u(tk) ⇀ ũ in (Lp(Ω))n as tk → t0.

Note, that since u ∈ C([0, T ];L2(Ω)) we have u(t)→ u(t0) in L2(Ω). Then for ϕ ∈ (D(Ω))n

we see ∫
Ω

∇u(tk)ϕdx = −
∫

Ω

u(tk)∇ϕdx→ −
∫

Ω

u(t0)∇ϕdx =

∫
Ω

∇u(t0)ϕdx.
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Thus we get that ũ = ∇u(t0). Then by the weak lower semicontinuity of the norm we know
that

‖∇u(t0)‖p ≤ lim inf
tk→t0

‖∇u(tk)‖p.

Therefore, by (3.15) we see

(3.16) ‖∇u(tk)‖pp → ‖∇u(t0)‖pp as tk → t0, t0 ≥ 0.

Combining (3.16) and the fact that ∇u(tk) ⇀ ∇u(t0) in (Lp(Ω))n we get that

‖∇(u(tk)− u(t0))‖pp → 0 as tk → t0, t0 ≥ 0.

Since the limit is unique and this holds for every subsequence, hence, we get the result.
Uniqueness follows by the uniqueness result for a weak solution.

It is known [7, Lemma 6.1] that there exists a subsequence tk → +∞ such that u(tk)

convergenes to a stationary point in W 1,p
0 (Ω). The last statement of the theorem can be

obtained as in [7] using (3.10). �

4. Local convergence results

Let us recall some results [7] on the associated stationary problem to the problem (1.1),
that is the following problem

(4.1)


−∇ · a(‖∇u‖pp)|∇u|p−2∇u = f in Ω,

u = 0 on Γ.

Let ϕ be the unique solution to

(4.2)

 −∇ · |∇ϕ|
p−2∇ϕ = f in Ω,

ϕ = 0 on Γ.

Then the stationary points are determined by the solutions to

(4.3) a(µ) = ‖∇ϕ‖p−1
p µ

1
p−1 := y(µ).

Hence, if (4.3) admits a unique solution, so does the stationary problem, then for any initial
data u0 the solution u(t) converges to this solution of the stationary problem.

Theorem 4.1. Let p ≥ 2, u∗ be an isolated solution to the problem (4.1), corresponding to
the solution µ∗ of the equation (4.3). Assume that the function a′ is continuous and

(4.4)
p

p− 1
a′(µ∗)µ∗ + a(µ∗) = δ > 0.

Then there exists ε > 0 such that if the initial value u0 ∈ Nε(u∗), where

(4.5) Nε(u∗) :=

{
u ∈W 1,p

0 (Ω) : ‖∇(u− u∗)‖p < ε, E(u) < E(u∗) +
δεp

16(18)
p
2

}
then

(4.6) u(t)→ u∗ in W 1,p
0 (Ω).
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Proof . Set E(s) = E(u∗ + s(u− u∗)). Then one has

(4.7) E(u)− E(u∗) = E(1)− E(0) =

∫ 1

0

E ′(s)ds = E ′(0) +

∫ 1

0

(1− s)E ′′(s)ds

=

∫ 1

0

(1− s)E ′′(s)ds,

since E ′(0) = 0 due to the fact that u∗ is a stationary point.
Denote by w = u− u∗. After a simple computation we see that

(4.8) E ′′(s) = pa′(‖∇(u∗ + sw)‖pp)
(∫

Ω

|∇(u∗ + sw)|p−2∇(u∗ + sw)∇wdx
)2

+ a(‖∇(u∗ + sw)‖pp)
(∫

Ω

(p− 2)|∇(u∗ + sw)|p−4(∇(u∗ + sw)∇w)2

+ |∇(u∗ + sw)|p−2|∇w|2dx
)
.

If a′(‖∇(u∗ + sw)‖pp) ≥ 0 since p ≥ 2 one has

(4.9) E ′′(s) ≥ a(‖∇(u∗ + sw)‖pp)
∫

Ω

|∇(u∗ + sw)|p−2|∇w|2dx.

Remark that by the Hölder and the Cauchy-Schwarz inequalities we have that(∫
Ω

|∇(u∗ + sw)|p−2∇(u∗ + sw)∇wdx
)2

≤ p− 2 + 1

p− 1

∫
Ω

|∇(u∗ + sw)|p−4(∇(u∗ + sw)∇w)2dx

∫
Ω

|∇(u∗ + sw)|pdx

≤ 1

p− 1

(
(p− 2)

∫
Ω

|∇(u∗ + sw)|p−4(∇(u∗ + sw)∇w)2dx

+

∫
Ω

|∇(u∗ + sw)|p−2|∇w|2dx
)∫

Ω

|∇(u∗ + sw)|pdx.

Therefore, if a′(‖∇(u∗ + sw)‖pp) < 0 we get that

(4.10) E ′′(s) ≥
(

p

p− 1
a′(‖∇(u∗ + sw)‖pp)‖∇(u∗ + sw)‖pp + a(‖∇(u∗ + sw)‖pp)

)
×
(∫

Ω

(p− 2)|∇(u∗ + sw)|p−4(∇(u∗ + sw)∇w)2

+ |∇(u∗ + sw)|p−2|∇w|2dx
)
.

For a, b non negative numbers we have that

|ap − bp| ≤ p|a− b|{a+ b}p−1.

Then using the Hölder inequality for s ∈ (0, 1) we see that∣∣‖∇(u∗ + sw)‖pp − ‖∇u∗‖pp
∣∣ ≤ ps∫

Ω

(
|∇(u∗ + sw)|+ |∇u∗|

)p−1|∇w|dx

≤ p
∣∣|∇(u∗ + sw)|+ |∇u∗|

∣∣p−1

p
‖∇w‖p.
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Hence, by the continuity of a′ and due to the assumption (4.4) from (4.9) and (4.10) we can
deduce that there exists η > 0 such that

(4.11) ‖∇w‖p ≤ η ⇒ E ′′(s) ≥ δ

2

∫
Ω

|∇(u∗ + sw)|p−2|∇w|2dx,

i.e. by (4.7) and Lemma 2.2

(4.12) E(u)− E(u∗) ≥
δ

2

∫ 1

0

(1− s)
∫

Ω

|∇(u∗ + sw)|p−2|∇w|2dxds ≥ δ

16(18)
p
2

‖∇w‖pp.

We choose ε < η such that u∗ is the unique stationary point in

Bε = {u : ‖∇(u− u∗)‖p < ε}
(we can do this since u∗ is an isolated stationary point) and u0 ∈ Nε(u∗). We introduce the
set A defined by

A = {t ∈ [0,+∞) | u(t) ∈ Nε(u∗)}.
Since u ∈ C([0, T ];W 1,p

0 (Ω)) it is clear that A contains a neighbourhood of 0 and is open.
Denote by t∞ the point such that t∞ = Sup{t | [0, t) ⊂ A}. Let tn be a sequence in A such

that tn → t∞, tn < t∞. Since u ∈ C([0, T ];W 1,p
0 (Ω)) one has

‖∇(u(t∞)− u∗)‖p ≤ ε < η.

Hence using the fact that E is decreasing along the trajectories and (4.11), (4.12) we deduce
that

δ

16(18)
p
2

‖∇(u(t∞)− u∗)‖pp ≤ E(u(t∞))− E(u∗) <
δ

16(18)
p
2

εp,

i.e. t∞ ∈ A and since A is open we get a contradiction with the definition of t∞. Thus t∞
is not finite and A = [0,∞). So u(t) ∈ Nε(u∗) for all t. From Theorem 3.1 we know that
u(t) converges to a stationary point. Since u∗ is the only stationary point in Bε then the
result follows. �

Remark 4.1. The assumption (4.4) is equivalent to

a′(µ∗) >
(1− p)a(µ∗)

pµ∗
= y′(µ∗).

Therefore,

lim
µ→µ∗

a(µ)− a(µ∗) + y(µ∗)− y(µ)

µ− µ∗
> 0

and it holds that there exists α > 0 such that

(a(µ)− y(µ))(µ− µ∗) > 0 ∀µ ∈ (µ∗ − α, µ∗ + α), µ 6= µ∗,

that is we are in the case of Figure 1.1a.

Thus from Remark 4.1 we see that the stationary point u∗ corresponds to an isolated
local minimum of the energy E (see [7]). Therefore, Theorem 4.1 can be reformulated in
Theorem 1.1.
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