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CRITICAL GROUP ESTIMATES FOR NONREGULAR CRITICAL

POINTS OF FUNCTIONALS ASSOCIATED WITH QUASILINEAR

ELLIPTIC EQUATIONS

SILVIA CINGOLANI, MARCO DEGIOVANNI, AND GIUSEPPINA VANNELLA

Abstract. We consider a class of quasilinear elliptic equations whose principal part
includes the p-area and the p-Laplace operators, when p lies in a suitable left neighbor-

hood of 2. For the critical points of the associated functional, we provide estimates of

the corresponding critical groups, under assumptions that do not guarantee any further
regularity of the critical point.

1. Introduction

Consider the quasilinear elliptic problem

(1.1)

 −div

[(
κ2 + |∇u|2

) p−2
2 ∇u

]
+ g(x, u) = Λ in Ω ,

u = 0 on ∂Ω ,

where Ω is a bounded open subset of RN , while p > 1 and κ ≥ 0 are real numbers.
Under suitable assumptions on g and Λ, weak solutions u of (1.1) correspond to critical

points of the C1-functional f : W 1,p
0 (Ω)→ R defined as

(1.2) f(u) =

∫
Ω

Ψp,κ(∇u) dx+

∫
Ω

G(x, u) dx− 〈Λ, u〉 ,

where

Ψp,κ(ξ) =
1

p

[(
κ2 + |ξ|2

) p
2 − κp

]
, G(x, s) =

∫ s

0

g(x, t) dt .

About the principal part of the equation, the reference cases are the p-area operator for
κ = 1 and the p-Laplace operator for κ = 0. In the case p = 2 the value of κ is irrelevant.

In the recent years, several works have been devoted to the description of the critical
groups of f at a solution u0 of (1.1) via Hessian-type notions.

For functionals defined on Banach spaces, serious difficulties arise in extending Morse
theory (see [23, 22, 5, 6, 7]). More precisely, by standard deformation results, which hold

2010 Mathematics Subject Classification. 35J62, 35J92, 58E05.
Key words and phrases. p-area operator, p-Laplace operator, functionals with lack of smoothness, critical

groups, Morse index.
Received 24/10/2014, accepted 01/04/2015.

The research of the authors was partially supported by Gruppo Nazionale per l’Analisi Matematica, la
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also in general Banach spaces, one can prove the so-called Morse relations, which can be
written as

∞∑
m=0

Cmt
m =

∞∑
m=0

βmt
m + (1 + t)Q(t) ,

where (βm) is the sequence of the Betti numbers of a pair of sublevels ({f ≤ b}, {f < a})
and (Cm) is a sequence related to the critical groups of the critical points u of f with
a ≤ f(u) ≤ b (see e.g. [6, Theorem I.4.3]). The problem, in the extension from Hilbert to
Banach spaces, concerns the estimate of (Cm), hence of critical groups, by the Hessian of f
or some related concept. In a Hilbert setting, the classical Morse lemma and the generalized
Morse lemma [16] provide a satisfactory answer. For Banach spaces, a similar general result
is so far not known.

In the specific case of the functional defined by (1.2), for p > 2 and κ > 0 the first and
the last author have proved an extension of the Morse Lemma and established a connection
between the critical groups and the Morse index (see [11, 12, 13]), taking advantage of the
fact that, under suitable assumptions on g and Λ, the functional f is actually of class C2 on
W 1,p

0 (Ω) and that

Ψ′′p,κ(η)[ξ]2 ≥ νp,κ|ξ|2 with νp,κ > 0 .

Moreover, an approximation result of Marino-Prodi type is proved in [14].
The results of [11] have been extended in [9, 10], in order to cover the whole case 1 < p <

∞, when κ > 0, and the case 1 < p ≤ 2 when κ = 0.
If Ω is a ball centered at 0, for any p > 1 estimates of critical groups associated to p-

Laplacian equations have been obtained by Aftalion and Pacella [2] at the positive radial
solutions u0 such that |∇u0(x)| 6= 0 for x 6= 0.

In [2, 9, 10], the assumptions on g and Λ imply that any solution of (1.1) is of class
C1,α(Ω) for some α ∈]0, 1]. This is crucial for the arguments used in those papers.

Our purpose is to consider a class of functionals including (1.2) for a certain range of p ≤ 2,
under assumptions that do not guarantee any further regularity of the critical point u0. More
precisely, define

(1.3) f(u) =

∫
Ω

Ψ(∇u) dx+

∫
Ω

G(x, u) dx− 〈Λ, u〉 .

Throughout the paper, we will assume that:

(Ψ1) the function Ψ : RN → R is of class C1 with Ψ(0) = 0 and ∇Ψ(0) = 0; moreover,
there exist

max

{
1,

2N

N + 2

}
< p ≤ 2 ,

κ ≥ 0 and 0 < ν ≤ C such that the functions (Ψ− νΨp,κ) and (C Ψp,κ −Ψ) are
both convex;

(Ψ2) if κ = 0 and p < 2, then Ψ is of class C2 on RN \ {0}; otherwise, Ψ is of class C2 on
RN ;

(g) the function g : Ω × R → R is such that g(·, s) is measurable for every s ∈ R and
g(x, ·) is of class C1 for a.e. x ∈ Ω; moreover:

– if p < N , then g(x, 0) ∈ L(p∗)′(Ω) and there exist a ∈ L(p∗/2)′(Ω) and b ≥ 0
such that

|Dsg(x, s)| ≤ a(x) + b|s|p
∗−2 ,
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where p∗ = Np
N−p ;

– if p = N , then there exist q, r > 1, a ∈ Lq(Ω) and b ≥ 0 such that g(x, 0) ∈
Lq(Ω) and

|Dsg(x, s)| ≤ a(x) + b|s|r ;

– if p > N , then g(x, 0) ∈ L1(Ω) and, for every M > 0, there exists aM ∈ L1(Ω)
such that

|s| ≤M =⇒ |Dsg(x, s)| ≤ aM (x) ;

(Λ) we have Λ ∈W−1,p′(Ω).

Under these assumptions, it is easily seen that f : W 1,p
0 (Ω)→ R is of class C1.

Let us recall the first ingredient we need from [6, 15, 19].

Definition 1. Let G be an abelian group, c = f(u0) and f c =
{
u ∈W 1,p

0 (Ω): f(u) ≤ c
}

.

The m-th critical group of f at u0 with coefficients in G is defined by

Cm(f, u0;G) = Hm (f c, fc \ {u0};G) ,

where H∗ stands for Alexander-Spanier cohomology [21]. We will simply write Cm(f, u0),
if no confusion can arise.

In general, it may happen that Cm(f, u0) is not finitely generated some m and that
Cm(f, u0) 6= {0} for infinitely many m’s. If however u0 is an isolated critical point of f ,
under assumptions (Ψ1), (g) and (Λ) it follows from [8, Theorem 1.1] and [3, Theorem 3.4]
that C∗(f, u0) is of finite type.

Now, as a second ingredient, we need a notion of Morse index, which is not standard, as f
is not of class C2 on W 1,p

0 (Ω). More precisely, because of (Ψ1), (g) and (Λ), the functional{
u 7→

∫
Ω

G(x, u) dx− 〈Λ, u〉
}

is actually of class C2 on W 1,p
0 (Ω). On the other hand, the principal part{

u 7→
∫

Ω

Ψ(∇u) dx

}
is never of class C2 for p < 2 and is of class C2 in the case p = 2 iff Ψ is a quadratic form
on RN (see [1, Proposition 3.2]).

So, let u0 ∈W 1,p
0 (Ω) be a critical point of the functional f , namely a weak solution of{

−div [∇Ψ(∇u)] + g(x, u) = Λ in Ω ,

u = 0 on ∂Ω .

Because of the term Λ ∈W−1,p′(Ω), we cannot expect any further regularity on u0, even in
the case g = 0.

In the case κ > 0, observe that

(1.4)
(p− 1)ν

(κ2 + |η|2)
2−p
2

|ξ|2 ≤ Ψ′′(η)[ξ]2 ≤ C

(κ2 + |η|2)
2−p
2

|ξ|2 for any η, ξ ∈ RN ,
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as (Ψ− νΨp,κ) and (C Ψp,κ −Ψ) are both convex. Let us define a generalized quadratic

form Qu0 : W 1,p
0 (Ω)→]−∞,+∞] by

Qu0
(v) =

∫
Ω

Ψ′′(∇u0)[∇v]2 dx+

∫
Ω

Dsg(x, u0)v2 dx .

In the case κ = 0 and p < 2, observe that

(1.5)
(p− 1)ν

|η|2−p
|ξ|2 ≤ Ψ′′(η)[ξ]2 ≤ C

|η|2−p
|ξ|2 for any η, ξ ∈ RN with η 6= 0 .

Then set

(1.6) Zu0
= {x ∈ Ω : ∇u0(x) = 0}

and define Qu0
: W 1,p

0 (Ω)→]−∞,+∞] by

Qu0(v) =


∫

Ω\Zu0

Ψ′′(∇u0)[∇v]2 dx+

∫
Ω

Dsg(x, u0)v2 dx if ∇v(x) = 0 a.e. in Zu0
,

+∞ otherwise .

Finally, define the Morse index of f at u0 (denoted by m(f, u0)) as the supremum of the
dimensions of the linear subspaces V of C1

c (Ω) such that

Qu0
(v) < 0 for any v ∈ V \ {0}

and the large Morse index of f at u0 (denoted by m∗(f, u0)) as the supremum of the dimen-

sions of the linear subspaces V of W 1,p
0 (Ω) such that

Qu0(v) ≤ 0 for any v ∈ V .
We clearly have m(f, u0) ≤ m∗(f, u0).

Now we can state our main results.

Theorem 1. Let κ > 0 and let u0 ∈W 1,p
0 (Ω) be a critical point of the functional f defined

in (1.3). Then we have m∗(f, u0) < +∞ and

Cm(f, u0) = {0} whenever m < m(f, u0) or m > m∗(f, u0) .

Remark 1. Since the value of κ is irrelevant in the case p = 2, Theorem 1 covers also the
case κ = 0 with p = 2.

Remark 2. If u0 ∈W 1,∞(Ω), from inequality (1.4) we infer that{
v 7→

∫
Ω

Ψ′′(∇u0)[∇v]2 dx

}
is well behaved in the space W 1,2

0 (Ω), which is compactly embedded in L2(Ω), and this is
on the basis of the technique used in [9, 10].

As we have already observed, in our case u0 ∈W 1,p
0 (Ω) and we cannot expect any further

regularity, because of the presence of the term Λ ∈ W−1,p′(Ω). As a substitute, we will

prove in Proposition 2 a W 1,p
0 (Ω)-coercivity which allows, in combination with the compact

embedding of W 1,p
0 (Ω) in L2(Ω) due to assumption (Ψ1), to recover enough information to

prove our results.

In the case κ = 0 and p < 2, we can prove that critical groups of high dimension are
trivial.
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Theorem 2. Let κ = 0 and p < 2. Let u0 ∈W 1,p
0 (Ω) be a critical point of the functional f

defined in (1.3). Then we have m∗(f, u0) < +∞ and

Cm(f, u0) = {0} whenever m > m∗(f, u0) .

2. Parametric minimization

First of all, let us recall some basic facts. The next concept is taken from [4, 20].

Definition 2. Let X be a reflexive Banach space and D ⊆ X. A map F : D → X ′ is said
to be of class (S)+ if, for every sequence (uk) in D weakly convergent to u in X with

lim sup
k
〈F (uk), uk − u〉 ≤ 0 ,

we have ‖uk − u‖ → 0.

The next result is contained for instance in [10, Proposition 2.5].

Proposition 1. Let X be a reflexive Banach space, let f : X → R be a function of
class C1and let C be a closed and convex subset of X. Assume that f ′ is of class (S)+

on C.
Then the following facts hold:

(a) f is sequentially lower semicontinuos on C with respect to the weak topology;
(b) if (uk) is a sequence in C weakly convergent to u with

lim sup
k

f(uk) ≤ f(u) ,

we have ‖uk − u‖ → 0.

Throughout this section, u0 will denote a critical point of the functional f defined in (1.3).
We will also denote by ‖ ‖p the usual norm of Lp.

Given a continuous function Φ : RN → R, for any x, v ∈ RN we set

Φ′′(x)[v]2 = lim inf
y→x
t→0
w→v

Φ(y + tw) + Φ(y − tw)− 2Φ(y)

t2
.

Then the function
{

(x, v) 7→ Φ′′(x)[v]2
}

is lower semicontinuous. If Φ is convex, it is also

clear that Φ′′(x)[v]2 ∈ [0,+∞] and that Φ′′(x)[0]2 = 0. In particular, it is easily seen that

κ = 0 and p < 2 =⇒ Ψ′′p,κ(η)[ξ]2 =

{
+∞ if η = 0 and ξ 6= 0 ,

0 if η = ξ = 0 .

Since (Ψ− νΨp,κ) is convex, we also have

κ = 0 and p < 2 =⇒ Ψ′′(η)[ξ]2 =

{
+∞ if η = 0 and ξ 6= 0 ,

0 if η = ξ = 0 ,

while Ψ′′(η)[ξ]2 = Ψ′′(η)[ξ]2 in the other cases. In particular, the function
{
ξ 7→ Ψ′′(η)[ξ]2

}
is convex for any η ∈ RN .
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Proposition 2. For every u, v ∈W 1,p
0 (Ω), we have

(p− 1)ν‖∇v‖2p ≤
(∫

Ω

(
κ2 + |∇u|2

) p
2 dx

) 2−p
p
∫

Ω

Ψ′′(∇u)[∇v]2 dx

with the convention 0 · (+∞) = +∞.

Proof. If κ > 0 and p < 2, we have

|∇v|p =
(
κ2 + |∇u|2

) (2−p)p
4

|∇v|p

(κ2 + |∇u|2)
(2−p)p

4

a.e. in Ω .

From Hölder’s inequality we infer that(∫
Ω

|∇v|p dx
) 2

p

≤
(∫

Ω

(
κ2 + |∇u|2

) p
2 dx

) 2−p
p
∫

Ω

|∇v|2

(κ2 + |∇u|2)
2−p
2

dx

and the assertion follows from (1.4).
Taking into account (1.5), the case κ = 0 and p < 2 can be proved in a similar way, while

the case p = 2 is obvious. �

The next result is contained in [10, Proposition 3.1].

Proposition 3. For every u, v ∈W 1,p
0 (Ω), the function{

(x, t) 7→ (1− t)Ψ′′
(
∇u(x) + t(∇v(x)−∇u(x))

)[
∇v(x)−∇u(x)

]2}
belongs to L1(Ω×]0, 1[) and one has∫

Ω

Ψ(∇v) dx−
∫

Ω

Ψ(∇u) dx−
∫

Ω

∇Ψ(∇u) · (∇v −∇u) dx

=

∫ 1

0

(1− t)
{∫

Ω

Ψ′′
(
∇u(x) + t(∇v(x)−∇u(x))

)[
∇v(x)−∇u(x)

]2
dx

}
dt .

Theorem 3. Let (uk), (vk) be two sequences in W 1,p
0 (Ω) such that (uk) is convergent to u

in W 1,p
0 (Ω), while (vk) is weakly convergent to v in W 1,p

0 (Ω).
Then we have∫

Ω

Ψ′′(∇u)[∇v]2 dx+

∫
Ω

Dsg(x, u)v2 dx

≤ lim inf
k

(∫
Ω

Ψ′′(∇uk)[∇vk]2 dx+

∫
Ω

Dsg(x, uk)v2
k dx

)
.

Proof. We have

Dsg(x, uk)v2
k −Dsg(x, u)v2

=
(
Dsg(x, uk)v2

k −Dsg(x, u)v2
k

)
+
(
Dsg(x, u)v2

k −Dsg(x, u)v2
)
.

Since (Ψ1) implies p∗ > 2 in the case p < N , from (g) we infer that∫
Ω

Dsg(x, u)v2 dx = lim
k

∫
Ω

Dsg(x, uk)v2
k dx .

Then the assertion follows from the Theorem in [17]. �
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Proposition 4. There exists a direct sum decomposition

W 1,p
0 (Ω) = V ⊕W

such that:

(a) dimV = m∗(f, u0) < +∞ and W is closed in W 1,p
0 (Ω);

(b) we have∫
Ω

Ψ′′(∇u0)[∇(v + w)]2 dx+

∫
Ω

Dsg(x, u0)(v + w)2 dx

=

∫
Ω

Ψ′′(∇u0)[∇v]2 dx+

∫
Ω

Dsg(x, u0)v2 dx

+

∫
Ω

Ψ′′(∇u0)[∇w]2 dx+

∫
Ω

Dsg(x, u0)w2 dx

for any v ∈ V and w ∈W ,∫
Ω

Ψ′′(∇u0)[∇v]2 dx+

∫
Ω

Dsg(x, u0)v2 dx ≤ 0

for any v ∈ V ,∫
Ω

Ψ′′(∇u0)[∇w]2 dx+

∫
Ω

Dsg(x, u0)w2 dx > 0

for any w ∈W \ {0} .

Proof. Let us treat the case κ = 0 and p < 2. The case κ > 0 is similar and even simpler.
If u0 = 0, we have∫

Ω

Ψ′′(∇u0)[∇v]2 dx = +∞ for any v ∈W 1,p
0 (Ω) \ {0}

and the assertion is true with V = {0} and W = W 1,p
0 (Ω). Otherwise, let

Xu0 =

{
v ∈W 1,p

0 (Ω) : ∇v(x) = 0 a.e. in Zu0 and
|∇v|2

|∇u0|2−p
∈ L1(Ω \ Zu0)

}
,

where Zu0 is defined in (1.6). By Proposition 2 it follows that

(v|w)u0
=

∫
Ω\Zu0

Ψ′′(∇u0) [∇v,∇w] dx

is a scalar product on Xu0 which makes Xu0 a Hilbert space continuously embedded in

W 1,p
0 (Ω), which is in turn compactly embedded in L2(Ω).

Moreover, we have that {v 7→ Dsg(x, u0)v} is a compact operator from W 1,p
0 (Ω) into

W−1,p′(Ω), hence from Xu0
into X ′u0

.
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It follows that there exist a finite-dimensional subspace V of Xu0
and a closed subspace

W̃ of L2(Ω) such that L2(Ω) is the orthogonal sum of V and W̃ and

∀v ∈ V,∀w ∈ Xu0
∩ W̃ :

∫
Ω\Zu0

Ψ′′(∇u0)[∇v,∇w] dx+

∫
Ω

Dsg(x, u0)vw dx = 0 ,

∀v ∈ V :

∫
Ω\Zu0

Ψ′′(∇u0)[∇v]2 dx+

∫
Ω

Dsg(x, u0)v2 dx ≤ 0 ,

∀w ∈ Xu0
∩ W̃ : w 6= 0 =⇒

∫
Ω\Zu0

Ψ′′(∇u0)[∇w]2 dx+

∫
Ω

Dsg(x, u0)w2 dx > 0 .

In particular, if we set W = W 1,p
0 (Ω) ∩ W̃ , we have W 1,p

0 (Ω) = V ⊕W with W closed in

W 1,p
0 (Ω). Moreover, dimV is the supremum of the dimensions of the linear subspaces of

Xu0
on which the quadratic form{

u 7→
∫

Ω\Zu0

Ψ′′(∇u0)[∇u]2 dx+

∫
Ω

Dsg(x, u0)u2 dx

}
is negative semidefinite. Since∫

Ω

Ψ′′(∇u0)[∇u]2 dx+

∫
Ω

Dsg(x, u0)u2 dx = +∞ for any u ∈W 1,p
0 (Ω) \Xu0

,

the assertion follows. �

In the following, we consider a direct sum decomposition as in the previous Proposition.
We also set, for any r > 0,

Br =
{
u ∈W 1,p

0 (Ω) : ‖∇u‖p < r
}
,

Dr =
{
u ∈W 1,p

0 (Ω) : ‖∇u‖p ≤ r
}
.

Lemma 1. There exist r, δ > 0 such that, for every u ∈ (u0 + Dr) and every w ∈ W , one
has ∫

Ω

Ψ′′(∇u)[∇w]2 dx+

∫
Ω

Dsg(x, u)w2 dx ≥ δ‖∇w‖2p .

Proof. Assume, for a contradiction, that there exist a sequence (vk) strongly convergent

to u0 in W 1,p
0 (Ω) and a sequence (wk) in W such that

(2.1)

∫
Ω

Ψ′′(∇vk)[∇wk]2 dx+

∫
Ω

Dsg(x, vk)w2
k dx <

1

k
‖∇wk‖2p .

Without loss of generality, we may assume that ‖∇wk‖p = 1. Then, up to a subsequence,

(wk) is weakly convergent to some w in W 1,p
0 (Ω). In particular, w ∈ W . From Theorem 3

we infer that ∫
Ω

Ψ′′(∇u0)[∇w]2 dx+

∫
Ω

Dsg(x, u0)w2 dx ≤ 0 ,

whence w = 0.
Coming back to (2.1), now we deduce that

lim
k

∫
Ω

Ψ′′(∇vk)[∇wk]2 dx = 0 .
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By Proposition 2 we infer that ∇wk → 0 in Lp(Ω). Since ‖∇wk‖p = 1, a contradiction
follows. �

Theorem 4. There exists r > 0 such that:

(a) the map f ′ is of class (S)+ on u0 +D2r;
(b) for every v ∈ V ∩Dr, the C1-functional

W → R
w 7→ f(u0 + v + w)

is strictly convex on W ∩Dr.

Proof. By [3, Theorem 3.4] there exists r > 0 such that the map f ′ is of class (S)+ on
u0 +D2r. By decreasing r we infer by Lemma 1 that

(2.2)

∫
Ω

Ψ′′(∇(u0 + u))[∇w]2 dx+

∫
Ω

Dsg(x, u0 + u)w2 dx ≥ δ‖∇w‖2p

for every u ∈ D2r and every w ∈W .
If v ∈ V ∩Dr, t ∈ [0, 1] and w0, w1 ∈W ∩Dr, by Proposition 3 and (2.2) we deduce that

(1− t)f(u0 + v + w0) + tf(u0 + v + w1)

≥ f(u0 + v + (1− t)w0 + tw1) +
δ

2
t(1− t) ‖∇w1 −∇w0‖2p .

Therefore {w 7→ f(u0 + v + w)} is strictly convex on W ∩Dr. �

Theorem 5. There exist r > 0 and % ∈]0, r] such that, for every v ∈ V ∩D%, there exists
one and only one w ∈W ∩Dr such that

f(u0 + v + w) ≤ f(u0 + v + w) for any w ∈W ∩Dr .

Moreover, w ∈ Br and w is the unique critical point of {w 7→ f(u0 + v + w)} in W ∩Dr.

Finally, if we set ψ(v) = w, the map ψ is continuous from V ∩ D% into W 1,p
0 (Ω) with

ψ(0) = 0.

Proof. Let r > 0 be as in Theorem 4. Since u0 is a critical point of f and the functional
{w 7→ f(u0 + w)} is strictly convex on W ∩ Dr, we have f(u0) < f(u0 + w) for every
w ∈W ∩Dr with w 6= 0.

We claim that there exists % ∈]0, r] such that

f(u0 + v) < f(u0 + v + w) for any v ∈ V ∩D% and any w ∈W with ‖∇w‖p = r.

By contradiction, let (vk) be a sequence in V with vk → 0 and let (wk) be a sequence in W
with ‖∇wk‖p = r and f(u0 + vk) ≥ f(u0 + vk + wk). Up to a subsequence, (wk) is weakly
convergent to some w ∈W ∩Dr. Then (u0 + vk +wk) is weakly convergent to u0 +w with

lim sup
k

f(u0 + vk + wk) ≤ lim
k
f(u0 + vk) = f(u0) ≤ f(u0 + w) .

Combining Proposition 1 with Theorem 4, we deduce that (u0 + vk + wk) is strongly con-
vergent to u0 +w, whence f(u0 +w) = f(u0) with ‖∇w‖p = r, and a contradiction follows.

Again by Theorem 4, for any v ∈ V ∩D% there exists one and only one minimum point
w ∈W ∩Dr and in fact w ∈ Br. In particular, we have

〈f ′(u0 + v + w), w〉 = 0 for any w ∈W .



84 SILVIA CINGOLANI, MARCO DEGIOVANNI, AND GIUSEPPINA VANNELLA

If v = 0, then w = 0.
Finally, we set ψ(v) = w. If (vk) is convergent to v in V ∩ D%, up to a subsequence

(ψ(vk)) is weakly convergent to some w in W ∩Dr. Since

f(u0 + vk + ψ(vk)) ≤ f(u0 + vk + z) for any z ∈W ∩Dr ,

from Proposition 1 we infer that

f(u0 + v + w) ≤ f(u0 + v + z) for any z ∈W ∩Dr ,

whence w = ψ(v). Then the choice z = ψ(v) implies that

lim sup
k

f(u0 + vk + ψ(vk)) ≤ f(u0 + v + ψ(v)) ,

whence (vk + ψ(vk))→ (v + ψ(v)) strongly in W 1,p
0 (Ω). Therefore the map ψ is continuous

from V ∩D% into W endowed with the topology of W 1,p
0 (Ω). �

3. The finite dimensional reduction

Let u0 still denote a critical point of the functional f defined in (1.3). We also keep the
notations of Theorem 5 and define the reduced functional ϕ : V ∩B% → R as

ϕ(v) = f(u0 + v + ψ(v)) = min {f(u0 + v + w) : w ∈W ∩Dr} .

Theorem 6. The functional ϕ is of class C1 and

(3.1) 〈ϕ′(z), v〉 = 〈f ′(u0 + z + ψ(z)), v〉 for any z ∈ V ∩B% and v ∈ V .
In particular, 0 is a critical point of ϕ. Moreover, we have

Cm(ϕ, 0) ≈ Cm(f, u0) for any m ≥ 0 .

Finally, 0 is an isolated critical point of ϕ if and only if u0 is an isolated critical point of f .

Proof. For any v0, v1 ∈ V ∩B%, we have

ϕ(v1) = f(u0 + v1 + ψ(v1))

= f(u0 + v0 + ψ(v1)) + 〈f ′(u0 + v0 + t(v1 − v0) + ψ(v1)), v1 − v0〉
≥ f(u0 + v0 + ψ(v0)) + 〈f ′(u0 + v0 + t(v1 − v0) + ψ(v1)), v1 − v0〉
= ϕ(v0) + 〈f ′(u0 + v0 + t(v1 − v0) + ψ(v1)), v1 − v0〉

for some t ∈]0, 1[. Since ψ is continuous from V ∩B% into W 1,p
0 (Ω), it follows that

lim inf
(v0,v1)→(z,z)

v0 6=v1

ϕ(v1)− ϕ(v0)− 〈f ′(u0 + z + ψ(z)), v1 − v0〉
‖v1 − v0‖

≥ 0 .

We also have

ϕ(v1) = f(u0 + v1 + ψ(v1)) ≤ f(u0 + v1 + ψ(v0))

= f(u0 + v0 + ψ(v0)) + 〈f ′(u0 + v0 + t(v1 − v0) + ψ(v0)), v1 − v0〉
= ϕ(v0) + 〈f ′(u0 + v0 + t(v1 − v0) + ψ(v0)), v1 − v0〉

for some t ∈]0, 1[, whence

lim sup
(v0,v1)→(z,z)

v0 6=v1

ϕ(v1)− ϕ(v0)− 〈f ′(u0 + z + ψ(z)), v1 − v0〉
‖v1 − v0‖

≤ 0 .
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Therefore ϕ is of class C1 with

〈ϕ′(z), v〉 = 〈f ′(u0 + z + ψ(z)), v〉 .

Since ψ(0) = 0, we also have ϕ′(0) = 0.
Now consider

Y = {u0 + z + ψ(z) : z ∈ V ∩Bρ}
endowed with the W 1,p

0 (Ω)-topology. Since {z 7→ u0 + z + ψ(z)} is a homeomorphism from
V ∩Bρ onto Y which sends 0 into u0, it is clear that

Cm(ϕ, 0) ≈ Cm(f
∣∣
Y
, u0) for any m ≥ 0 .

Now set

U = u0 + (V ∩B%) + (W ∩Dr) .

Since

{w 7→ f(u0 + z + w)}
is convex on W ∩Dr for any z ∈ V ∩B%, we have that

H(u0 + z + w, t) = u0 + z + (1− t)w + tψ(z)

defines a strong deformation retraction of(
f c ∩ U, (f c \ {u0}) ∩ U

)
onto (

f c ∩ Y ∩ U, (f c \ {u0}) ∩ Y ∩ U
)
.

It follows

Hm(f c, fc \ {u0}) ≈ Hm(f c ∩ Y, (f c ∩ Y ) \ {u0}) ,
whence

Cm(ϕ, 0) ≈ Cm(f
∣∣
Y
, u0) ≈ Cm(f, u0) for any m ≥ 0 .

Since any critical point u of f in u0+(V ∩B%)+(W∩Dr) must be of the form u = u0+z+ψ(z)
with z ∈ V ∩ B%, from (3.1) we infer that 0 is isolated for ϕ if and only if u0 is isolated
for f . �

4. Proof of the main results

Proof of Theorems 2 and 1.
By Proposition 4, we have m∗(f, u0) = dimV < +∞. From Theorem 6 we also know that

Cm(f, u0) ≈ Cm(ϕ, 0) for any m ≥ 0 .

Since the critical groups are defined using Alexander-Spanier cohomology, it is clear that
Cm(ϕ, 0) = {0} whenever m > dimV , both in the case κ > 0 and in the case κ = 0 with
p < 2.

Now assume that κ > 0. Let V− be a linear subspace of C1
c (Ω) of dimension m(f, u0)

such that ∫
Ω

Ψ′′(∇u0)[∇v]2 dx+

∫
Ω

Dsg(x, u0)v2 dx < 0 for any v ∈ V− \ {0} .
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By (1.4) we have

Ψ′′(η)[ξ]2 ≤ C

(κ2 + |η|2)
2−p
2

|ξ|2 ≤ C

κ2−p |ξ|
2 for any η, ξ ∈ RN .

Then, it is easily seen that, for any u ∈W 1,p
0 (Ω), the function

fu(v) = f(u+ v)

is of class C2 on V− with

(fu)
′′
(z)[v]2 =

∫
Ω

Ψ′′(∇u+∇z)[∇v]2 dx+

∫
Ω

Dsg(x, u+ z)v2 dx

and, for any z, v ∈ V−, the function
{
u 7→ (fu)

′′
(z)[v]2

}
is continuous on W 1,p

0 (Ω). Moreover,
we have

(fu0
)
′′
(0)[v]2 < 0 for any v ∈ V− \ {0} .

From [18, Theorem 3.1] it follows that Cm(f, u0) = {0} whenever m < dimV− = m(f, u0).
�
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