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A VARIATIONAL APPROACH TO THE EIGENFUNCTIONS OF THE
ONE PARTICLE RELATIVISTIC HAMILTONIAN

VITTORIO COTI ZELATI AND MARGHERITA NOLASCO

ABSTRACT. In this note we give a variational characterization of the eigenvalues and
eigenvectors for the operator

H=Hy+V=vV-cA+m2ct+V,
where Hy is the relativistic (free) Hamiltonian operator and V is a real valued potential.
Our results hold when V(z) = —% and H describe a relativistic atom.

The characterization we give for the eigenvectors is useful in proving regularity and
exponential decay of the solutions — properties which have been object of investigation
by B. Simon with different techniques.

1. INTRODUCTION AND MAIN RESULTS

In this note we give a variational characterization of the eigenvalues and eigenvectors (see
Theorem [1|) for the operator

H=Hy+V =+v—-c2A+m2ct+V,

where Hj is the relativistic (free) Hamiltonian operator — which has been used to study
models where relativistic effects became relevant — and V is a real valued potential. Our
results hold when V(z) = —ﬁ and H describe a relativistic atom.

The characterization we give for the eigenvectors is useful in proving properties — such
as regularity (see Theorem [3|) and exponential decay of the solutions (see Theorem [2)) —
which have been object of investigation by B. Simon with different techniques in [16].

In order to describe our results, let us recall that to the operator Hy can be defined for all
f € H'(R3) as the inverse Fourier transform of the L? function \/c2[p[2 + m2c? f(p) (where
f denotes the Fourier transform of f). To Hy we can associate the following quadratic form
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90 VITTORIO COTI ZELATT AND MARGHERITA NOLASCO
which can be extended to all functions f,g € H'/?(R?) where

TR = (£ e PEY) | [ 0+ )IFe) dp < o0 ).

see for example [I3] for more details.
On the potential V' we assume

(h1) V € L3 (R3) + L>=(R?), V € L>°(R3\ Bpg,) for some Ry > 0 and
Nt _ 0
() pim IV ILo (2> r) = 05

(i) Jim_supessi, o p V(@)|ol* = —oo.

(h2) V is Hy - form bounded with bound less than 1, i.e. there exists a € (0, 1) such that
(6. V¢),.] < al¢, Hoo),,
for all ¢ € H'/?(R3;C);
Remark 1. The above assumptions are similar to those used in the study of the character-

ization and computation of the eigenvalues for the Dirac-Coulomb Hamiltonian, to which
our problem is related, see [8, [9] and references therein.

Remark 2. We recall that L% (RY), the weak L7 space, is the space of all measurable
functions f such that

supal{z | |£(x)] > a }7 < +oo,

a>0

where |E| denotes the Lebesgue measure of a measurable set £ C RY. Note that f(z) =
|#|~! does not belong to any Li-space but it belongs to L2 (R3). (see e.g. [13] for more
details).

Remark 3. The validity of (h2) when V is the Coulomb potential of a nucleus with Z protons
Ze?

(1.1) V(z)=—"—
|z

(in cgs units)

follows from important inequalities. Let us recall them here.
Hardy: for all ¢ € H(R3)

- 2
2l =l <20Vl < 2V =R2A + m2ety| ,
Kato, Herbst [10]: for all 1) € H'/2(R3)
(@,el ™) |, <2 (0.V=B0) < (v, V=RA+ miciy)
L2 2 L2 2Ch
Note that (h2) is satisfied for the electrostatic potential provided 0 < Z < 68 by Hardy and
provided 0 < Z < 87 by Kato.

Let us recall that the operator v —c2A + m2c?, exactly as for the fractional Laplacian,
can be related, following [3], to a Dirichlet to Neumann operator (see also [2] and [5 @] [7]
for more closely related models).

To show this, we take a given function u € S(R?) with Fourier transform @ and let

1 DY —4/c m2ctx
U(l’,y) = W /RS epyu(p)e 2|p|24+m?2ct dp

L2
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be the solution of the Dirichlet boundary problem
—0%0 — Ay +m2ctv =0 inRi:{(m7y)ERxR3|gc>0}
v(0,y) = u(y) for y € R® = OR%.

Setting

0 0
Tuly) = 5-(0.y) = = 5= (0.y);

we have that

v 1 in- N
Tuty) = =52 0.9) = Goyars | e/ @R+l i) dp

namely 7 = \/—c2A, + m2c* = Hy on the dense domain S(R?).
We consider the functional Z(¢) defined on H*(R?%,C)

(1.2) I(qb)://W(|8m¢\2+02|vy¢|2+m204|¢\2)dmdy+/R (6,.,V,,)dy
+

3

where ¢, € H'/? denotes the trace of ¢ € H* on 9R} = R3.
We have the following existence and characterization results for the eigenvalues and eigen-
functions, where we always assume m > 0.

Theorem 1. Let m > 0 and (h1)-(h2) hold. Then there exist \1 < Xa < ... < A\ < ... and
¢1,02, ..., bk, ... € HY(RY,C) such that, for all k € N

A = Z(¢k) = inf Z(¢)
Xk
where
X1:{¢€H1 | |Gerlr2 =1}
and, for1 <k eN
Xk = {¢ € Hl | |¢t7‘|L2 = ]-7 (¢tr7(¢i)t7‘)L2 :07 1= ]-7"'7k_ 1}
Moreover {\},., € 0aisc(Ho +V) and
0< A <. <A < Mpp1 — inf{oess(Ho +V)} =me?  for k — +oo0.

The functions ¢, = (¢1)e € HY?(R3,C) are the eigenfunctions of the operator Hy 4V,
and the functions ¢, € H* (R, C) are weak solution of the Neumann problem
©) gaggﬁk — Ay + m2ctep =0 n ]Ri

k % +Vor = Ak on 3Ri =R3.

The following Theorems give some properties of the eigenfunctions: regularity and expo-

nential decay.

Theorem 2 (exponential decay). Let m > 0 and (h1)-(h2) hold. Let ¢y, € H'(R%,C) (and
ok = (¢n)er) e the functions given by the Theorem [l

Then for all 0 < B < \/m?c* — A% there exists R > 0 such that eg‘mgok € L?(R®\ Bg).

Remark 4. Several authors have investigated the asymptotic behaviour of eigenfunctions.
Let us recall here the classical book by Agmon [I] and [14] 15, [4].
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Theorem 3 (regularity). Let ¢, € H (R, C) (and ¢ = (¢r)ir) be the functions given by
the Theorem[1] and Ry be given by (h1).
Then we have
(i) ¢ € WH4([0,r) x (R®\ Bg,)) for any q € [2,00], 7 > 0;
(i) ¢r € C%(]0,+00) x (R3\ Bg,)) for any a € [0,1] and o), € C¥*(R®\ Bg,);
(iii) of in addition V € L} (U) for some U C R? then for every V CC U (i.e. such that

loc

its closure is compact inU) ¢, € WHP([0,7) x V) for any p € [2,00) and r > 0 and
o € CO(V) for any o € [0,1).

2. PROOF OF THEOREM [I]

We divide the proof of Theorem [1}in several steps.

2.1. Notation and preliminary results. With ||u||, we will denote the norm of u €
LP(R%) and with |v], the norm of v € LP(R?).
We introduce the following (equivalent) norm in H'(R%, C)

612, = [ Q002 + 219,08 + m*ct|of?) dwy
+
and the following norm in the weak L%-space:
|f|L$u = sup{ |A|71/T/A |f(z)|dz | A C R? measurable, 0 < [4| < 400 }
where 1/¢+1/r = 1. For the weak L? spaces the following generalization of the weak Young
inequality holds:

Proposition 1 (see [IT}, thm. 2.10]). Let f € LL(RN), g € LL(RN) and h € LP(RN) with
%—s—%:l and 1 < p < q. Then

(2.1) 1£(g*W)llp < Clifllgwllgllawlhllp-

From this we deduce the following result:

Lemma 1. Let V € L3 (R®) and f € HY/?(R?).
Then

(2.2) IVIY2f],2 < CIVIRIFLL e

Ly,

Proof. Follows from [12, (42)] that the Green function G* of (—A 4 p?)*/? belongs to
LY G R if > 0and 0 < o < 3.

Then, given f € HY/2(R?), let h = (—=A + p>)V/4f € L*(R?), f = Glf/z x h. From the
weak Young’s inequality above (12.1]), we deduce

VI Fle = IVIP2(GE W)l e < CIVIY g 1GY ol oo 1P o
S OV, A+ i)Y, S CIVERIS,.

L3,
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We also recall that for all v € C§°(R?)

0
[, way= [ ay /+ Ouloldr < 2ol 10001,

and by density we get for all ¢ € H' and any o > 0
(23) o [ lo.fay< [[ (008 +a?oP) dody.
R3 R
This implies in particular that the quadratic form (kinetic energy)
(24) T() = [[ (1008 + m*cof?) dudy — me?ls, 2, >0
+

is positive definite.
We introduce the differential dZ(¢): H' — R of the functional Z

dZ(6)[h] =2Re//R4 (856, 85h) + (Vg Vyh) + m2c (6, 1) dady

+ 2 Re((btrv Vhtr)L2

The following property can be easily verified.
Lemma 2. For w € H(RY), let u = wy, € HY/2(R3) be the trace of w, i = F(u) and
v(ay) = Fy [alp)e VIR,

Then v e H'(RY), [[v] g @s) = ull gr/2gs), and
/ Ve2|p|? + m2ct |a)* dp = // (10207 + [V yv]* + m?ct|v]?) de dy
RS R%

< // (|0zw]? + 2|V w|? + m*ct|w|?) dz dy.
=y

In other words

(2.5) werl|31/2 = (Wer, Howr )2 < ||wl3p for every w € H'(RY)

93

2.2. Existence of the ground state. We consider the following minimization problem :

(Pl) )\1 = inf I(¢)

where S = {¢ € H' | |4 |2, =1}.

Lemma 3. The following holds:

(i) Z(¢) is bounded by below and coercive on H',
(i) 0 < Ay < mc?.

Proof. (i) Let ¢ € H', ¢ = ¢¢,. From (h2) and (2.5)), there exists a € (0,1) such that
(0, Ve)rz = —alp, vV —c2A + m2ct p)

L2

> a / / (100612 + 2|V, 0| + m2cl|g[?) d dy
=y
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Therefore, we may conclude that there exists § > 0 such that Z(¢) > 6][¢[* .
H

(ii) From (i) immediately follows that A; > 0. Now take ¢(z,y) = e*mczﬂp(y), with
¢ € C3°(R3,C), and \<P|L2 =1, we have

1
2(6) = me* = o [ Vel + [ ViePdy=£(o)
m Jgrs R3

Take, now ¢, (y) = ng/zgo(ny), we have
2
g ()

¢.l,, =1, for any 7 > 0 and setting ¢, (z,y) =

e
A\ —mc? < inf Z(¢, ) — mc? = inf E(p,) =

n>0 n>0

) 1 _
=1nfn2f2 IVsOIQdyﬂL/ Vn~y)lel® dy.
n>0 m Jgrs R3

By (h1), for any K > 0 there exists R > 0 such that for any |y| > R we have V(y) <
—K/|y|* a.e.. Hence

(e Vi 'y)e),, = / Virty)lel + / Vi ty)lel?
{n='y|<R} {n~ly|>R}
1
< sw P [ V- K sl
lyl<nR (ly|<R} {yl>nry Y]
< C(n® — Kn?)

where the constant C' > 0 depends on ¢ and R, and K > 0 is arbitrarily large.
We immediately conclude that for any given ¢ € C§°(R?; C)

. 1 _
limsup — (¢, V(7 'y)p),, = —00
17—>O+ n
which implies that Ay — mc? < 0. O
Letting G(¢) = |¢r,|?, we have that S = {¢ € H' | G(¢) =1} and the tangent space at
S at the point ¢ € S is the set
TyS ={he H"|dG(¢)[h] = 2Re(dy, her),, =0}

and that VsZ(¢), the projection of the gradient on the tangent space TS to S at the point
¢ is given by

VsZ(¢) = VI(¢) — u(¢)VG(9)
where VZ(¢) € H! is such that

(VI(9),h),, = dL(#)[h] = 2Re(¢,h) ,, +2Re(di, Vhir),, for all h € H*,
VG(¢) € H' is such that
(VG(),h),, = dG()[h] = 2Re(¢rr, hyy),,  forall he HY,
and p(¢) € R is such that VgZ(¢) € TpS. Then
0= (VG(9), VsZ(9)) 1 = (VG(9), VI(9)),.. — n(d)I VI,

and

(VG(9), VSZ(9))
IVG(9)I12,

w(p) =
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From

(VsZ(9),9) 0 = (VL(9), ) 10 — () (VG(),¢) .
= 22(¢) — 2u(0)G(9) = 2Z(¢) — 21u(9)

we also deduce that

1
(26) p(0) = 1(6) - 5(VsT(8),0),.,
We now recall the following well known result

Lemma 4. There exists a Palais-Smale minimizing sequence ¢, for T on the set S = {¢> ‘
|per]2. =1 }, that is a sequence such that, denoting ¢, = (dn)er,

I(pn) = My VsZ(gn) =0,  |pn|i =1

Proof. Assuming that the result does not hold, one deduces that there exist ¢ > 0, § > 0
such that ||VsZ(¢)|| > d > 0 for all ¢ € S such that A\; —e < Z(¢) < A1 + €. Then one can
build a gradient flow ' = VgZ(n), which leaves S invariant and pushes {Z < Ay + ¢} NS
into {Z < A1 — €} NS, a contradiction.

The Lemma also follows from Ekeland’s variational principle. (I

Lemma 5. Let ¢, be a Palais Smale sequence at some level A\ > 0 for T on S. Let

Pn = ((bn)tr-
If o, = 0 in H'/? then

(¢n, VL)OTL)L2 — 0.

Proof. Since T is coercive, ¢, is bounded H!, ¢, is bounded in H'/? and, by Sobolev
embedding, relatively compact in L{,  for p € [2,3). From follows that also p, is
bounded.

By (h1) V € L>®(R3\ Bg,) and for any £ > 0, the set A. = {y € R3\ Bg, | [V(y)| > ¢}
is bounded.

Take a radial function x € C§°(R?), with values in [0, 1] such that x(y) = 1 for y € By
and x(y) =0 for y € R?\ By and let x,(y) = x(R™1y).

Taking R > Ry in such a way that A. C B we have

[(ns (1= X3)Vin) 2| < elgnl?, <e.
We have, by assumption, Z(¢,) — A, G(¢n) = |pn iz =1 and
where p, = u(¢,) and also, by
1
(27) Hn = I(¢n> - §(VSI(¢n)a ¢n)H1 - A
Since x depends only on y we have that
(2.8) dZ(6n) X2 0n] = dZ(X0n) [Xnbn] = 2¢* [0 Vx|,

and since Cllon ||, > X% ¢nll,,, we have that
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on(1) = CIVZ(¢n) — VG (@) 6nll i = [(VZ(Sn) = 10 VG (Sn), X2 0n) 1 |
> |dz<¢n>[Xi¢n]| - |Mn2Re(‘Pn7X1‘Pn)L2|
Z 2I(XR¢"L) - 2C2||¢nvaR”i2 - 2|.un||XR90n ig

Now, by Sobolev compact embedding, for any given R > 0,
IXr®nl,, —0 as n — +oo.
Moreover,

C
2 2
[6nVxel?, < Cysgﬂglval <

Since by Lemma [3}(i) we have
I(xan) = Slxaall,

we may conclude (recalling that p, is bounded) that

C
IXp®nll?, < en+ .

H1 — R
and hence by (h2) and (2.5) we get

C
|(XaPns VXa@n) 2| < al(XnPns HoXnPn) 2| < allxpdnll®, < en+ -

Hl —
for some €, — 0 and R arbitrarily large. O
Now we may conclude the existence of a minimizer for P,. We have the following Propo-
sition:

Proposition 2. Let ¢, be a minimizing Palais Smale sequence at level Ay > 0 for T with
|(¢n)er],» =1 (as in Lemma @ )
Then ¢p, — ¢ #0 in H' and ¢ = |gz5tr|;21¢ is a minimizer for T on S, that is

@) =M, dul,. =1
Moreover ¢ (and hence also ¢) is a weak solution of the Neumann problem (E,).

Proof. Since T is coercive, ¢, is bounded (and weakly convergent) in H', ¢, = (¢n)e is
bounded (and weakly convergent) in H'/2.
If by contradiction ¢, — ¢ = 0, then by Lemma [5| we have

(¢ns V@ﬂ)g — 0.

Now, by (2.4) we get
Z(¢n) — m02|cpn ig > (¢n; V‘:DTL)LQ — 0.
On the other hand, by Lemma (ii)

I(d)n) - mc2|<pn i2 = I(¢n) —me — AL — me? <0

a contradiction, that is ¢, — ¢ #Z 0.



EIGENFUNCTIONS OF THE RELATIVISTIC HAMILTIONAN 97
It follows from ({2.6)) that

1
I(¢n) - i(vSI(QSn)» ¢n)H1 — A
and hence, by weak convergence, we have

dZ($p)[h] — pndG(dn)[h] = dZ($)[h] — \dG($)[h] =0 Vh e H

hence in particular

0 = dZ(¢)[g] — \dG(9)[g] = 2Z(¢) — 2MG(¢)

and we may conclude that ¢ = G(¢)~'/2¢ is a minimizer for Z on S, namely
(o -
h = S =260 2) = 100

G(9) =G(G(¢)"29) =1
O

Now, we look for the existence of higher eigenvalues and corresponding eigenfunctions.
We proceed by induction.

Let A1 be defined by (P,)) and ¢; be the corresponding minimizer given by Proposition

Assume we have defined, for j = 1,...,k =1, A\ <--- <X <. < 1 < me? and
¢; € H, ¢; = (¢;)r € H/? such that

(@is@j)r2 = 0ij, i,ij=1,...,k—1,

and
(P,) A =1(¢;) = f I(¢)  j=1....k—1
where,

X;={ocH"|G(¢)=bunlio =1, (ptr.0:),, =0 for i=1,...,j—1}.
We define
(P.) i = inf Z(¢)

beXy,

Remark 5. Setting G;(¢) = (¢j, ¢tr) ., for j > 1, we have that the linear functionals G; are
bounded on H' and for any ¢, h € H!

dG;(P)[h] = (VG;(#), h) ;. = (¢, h,,),, = Gi(h)  j=1,...k—1
Then Xy, = {¢ € H' | G(9) =1, gj<¢):o,y:1,..., -1},
TyXp={he H" | (VG(¢),h)m =0, Gj(h) =0, j=1,....k—1}

and the constrained gradient (i.e. the projection of the gradient of Z on the tangent space
Ty Xy) is given by
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Taking ¢ € X we have that

(vXkI(¢)’ (b)Hl = (VI(¢)7 ¢)H1 - MO(¢)( Z :u] vg] ¢) 1

= 27($) — 2u0($)G(9) — _Z 15(6)G;(¢) = 2Z(¢) — 2p10(9)

and we deduce that

1
(29) MO(¢) = I(¢) - §(VXkI(¢), ¢)H1'
Taking again ¢ € Xy andi=1,...,k — 1, from

(VX Z(), 6:) o =(VI(8),¢5),, — 1o(¢)(VG Zuj 0)(VG;(8), ),

=dZ(¢)[¢:] — to(¢)2 Re(dur, 01), Zuj CIND
=dZ(¢)[¢s] — 1i(9)

we have that

(2.10) pi(¢) = dZ(9)[¢i] — (Vx, Z(8), ¢i) n

We say that ¢,, € X} is a (constrained) Palais Smale sequence for Z on X}, at level Ay if
¢n S Xka
Z(dn) — A\ and ||VXkI(¢n)|| — 0.

The proof of existence of a minimizer for (P, ) proceeds as the proof of the existence of
the ground state ¢;. The key points are the following two Lemmas.

Lemma 6. A\ < \; < mc2.

Proof. Let us consider any k-dimensional linear subspace Gy C C§°(R?; C).
For ¢ € G NS and 1 > 0 we let ¢, (y) = 7*/%p(ny) € S and

2
Fl={¢,eH" | ¢,(zr,y)=e"" ", (y), peGrNS}.
Then, for any ¢, € F)/

I<¢n>—mc2=i/ Vo, P+ [ (0,70,
- / Vel + [ Vel

Arguing as in Lemma (ii) and by compactness of the set G N S, there exists 77 > 0 such
that for any ¢, € F!, we have

1
=2 Vo2 Vi) ol?
P+ wl* <0
T om /3 Vel /3 (w/m)lel

Since Xi N F}! # (), we have \g gsupF:I(qSﬁ) < me? . O
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Lemma 7. Let (, € X be a (constrained) Palais Smale sequence at level A, for T on Xy,
with gradient
k—1

VXkI(Cn) = VI(Cn) - MO(gn)vg(Cn) - ZMJ(CTL)VQ](CH)

j=1

Then, as n — 400

1o(Gn) = Ak pi(Gn) =0 (G=1,....k—1)
Moreover, if &, = (Cn)tr — 0 in HY2 then

(&n:Vén),. = 0.
Proof. We have that (,, € X is such that
Z(Ga) = A and ||V Z(Co)[| = 0.

Then ¢, is bounded in H! and from we have, as n — +oo

polG) = T(Go) — 5 (VTG Go) s = M

Remark that, for all j € {1,...,k — 1}

0=V, Z(65) = VI(6) — wo(6))VG(65) — 3 ml6;)9Gi(65).

i=1
and hence, for all ¢, € X} and j € {1,...,k — 1} we have that
dZ(Gn)[#;5] = dZ(9;)[Cn] = (VI(9;), Cn) 1

j—1

= M0(¢j)(vg(¢j)’ C’Vl)Hl + ZM%(¢J)(vgz(¢J)’ C’Vl)Hl =0.

i=1
From this we conclude, using , that
Mj(Cn) = dI(Qz)[(/)J] - (VXkI(Cn)7¢j)H1 = _(VXkI(Cn)v¢j)H1 =0

forj=1,...,k—1.
We then proceed as in the proof of Lemma [5} Since ¢, is a constrained Palais Smale

sequence, we have
0n(1) = CIV, ZCa)ll i 1Gall i 2 1(V s, Z(Gn)s X5 0

k—1
- |Z :“J'(Cn)(vgj(Cn)’ Xi»,gn)Hl |

j=1
k—1
> 2Z(XpGn) = 26216 VX1, = 20m0(Ca)llXanlz = D 11 (Ca)llxaénl L2
j=1
where o
2 2
1 VX, < CZISSD@IVXR\ <
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and by Sobolev compact embedding, for any given R > 0,
IXrénl,, >0 as n— +4oo.

Moreover, |11;(¢,)| < C for j =0,...,k—1.
Now, since Z is coercive, exactly as in Lemma [5] we may conclude

C
2

< + —
||XRCn|| €n R

H1 —
and by (h2) and Lemma
1% < 2 < ¢
[(VXr€ny Xnbn) 2| < allxeCally, < ent 5
for €, — 0 as n — +00, R arbitrary large, and the Lemma follows. O

We are now ready to prove the following Proposition for the existence of a minimizer for
Py
Proposition 3. Let (, € X}, be a minimizing Palais Smale sequence for (P,|).
Then ¢, — ¢, in H' and \(¢k)tr|:21¢k € Xy is a minimizer for problem (P.)), and a weak
solution of the Neumann problem (E,).

Proof. We proceed as in the proof of Lemma [2] to conclude that ¢, — ¢ # 0.

We clearly have that G;(¢r) = 0 for j = 1,...,k — 1. We do not know if |p|2 =1
(where ¢ = (dk)er)-

By Lemma [7] we have that

po(C) = A pi(G) =0 (G=1,....k—1)
then by weak convergence we then have that for all h € H', as n — 400

k—1
(VX Z(Cn)s 1) o = dZ(Co)[B] = 2010 (Ga) Re(€n har) o — D 115(Ca) (955 har)

j=1
— dZ(¢r)[h] — 2M Re(pr, hir) , = 0.
We deduce, taking h = ¢y,
0 = dZ(¢)ox] — 2Melerl?, = 2Z(dk) — 2lenl?,
and we conclude that |<pk|;21¢k € X}, is a minimizer for . O

Remark 6. It follows from the above Theorem that

(2.11) V. Z(¢r) = VI(¢r) — M VG(dr) = 0.

To conclude the proof of Theorem [1| we prove that {)‘k}k21 € 04isc(Ho + V) namely that
Ar has finite multiplicity.

Indeed suppose that there exists an eigenvalue Ay with infinite multiplicity. Then there
exists a corresponding sequence {cp%k)}neN C H'Y/? of eigenfunctions corresponding to the

same eigenvalue ). We will assume that |g0,(1k)|L2 =1 for all n € N. Letting

o) = FH [T 0] € X,
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by Lemma [2| we have I(an ) = A, and Vx, Z( (k)) = 0. We deduce from this that ¢F is
(k)

a bounded sequence in H'/2, since by orthogonality ¢ — 0 in L2, we have o) — 0 in

H'Y/2_ therefore by Lemma Iwe get
(") V), =0 as n — 400

n 9

and from this we get a contradiction, namely A, = Z( 5{“)) > mc?.
Finally since eigenvalues can accumulate only on the essential spectrum, we may conclude
that

0< A < oo < X1 <A = inf{oess(v)} = mc?  for k — +oo.

3. PROOF OF THEOREM

Take ¢ (and ¢ = (ér)r) and Ag as in Theorem [1} and take R > 0 and T > 0, we

set ;- (y) = Er(¥)9x (y) where Er(y) = min{(ly| - R)+,1} and g, (y) = minfe=!", T}, we
introduce also the sets Cr = { (z,y) € RL | R < |y| < R+ 1} and Dy = { (z,y) € R} |

efll <1 here f r and gT are respectively not constants.

From (2.11] and (| we have

0 idz(@c)[Xi(bk] — M Re (or, 2 0n)tr)

L2

24Z0r O) X 1] — AoeVyxrll?, — Al exl?,
Z(xr k) = o Vyxrll?, = Melxrexl?,
Z(xr9%) = Melxronl,

—62//DT e 2 — ¢ // 1, €R 1219, 4l2

—2¢8 //DTHCR = - (Vyér)Erlgr orl?

// 102 (s 1) |2+c/ 1V Ot 1) 2 + 52/ e G2
—/Rg \V\|XT¢k|2—AkAB|xT¢k|2

ly|>

Then, given 8 < y/m?ct — A} there exists R > 0 such that

vm2ct — 2 — A\, — sup |V(y)] >0

ly|>R

and hence

/ IXrtk* < C
]R3
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with C' independent on T'. Using monotone convergence we can pass to the limit as T" — +o0
to get

/I |>R|e€|y|¢k|2 <C
Yyl=

Namely, eg‘y‘gpk € L*(R3\ Bg).

4. PROOF OF THEOREM [3]

We need the following preliminary results.

Proposition 4. Let ¢, € H'(RY) (and @1, = (¢1)er) as in Theoreml 1| and V € L} (U).
Then ¢, € LP(Ry x V) and @i € LP(V) for anyp > 2 and V CC U.

Proof. Take ¢, (and @ = (¢r)sr) and A; as in Theorem I, let v = Re¢g. Take 7,6 > 0
and yg € U such that the set B, y5(yo) = {y € R3 ‘ ly — yo| < r+6} C U. For n € N,
let &,(y) € [0,1] a cut off function radial, piecewise linear and such that &,(y) = 1 if
lyl < v +6(3)" and &u(y) = 0if [y| > r + 5(%)"_1

Let T' > 0, we set Up = min{v+vT}7 Eg(y) = En(y yO) and X T(x7y) = fg(y)vgn (ﬂf,y)

where 8, = (3)" — 1. We introduce also the sets BY = {y € R3 | &) =1}, CY =
{y € R® } IV, &0 (y)| = )"} and Dy = {(z,y) € Ry f v (z,y) <T}. We have
B,(yo) C BY,, C B? CB,+5(yO) and Cy,, C BY for any n € N.
From
/ ‘a // 50 2 25n azv|2 +ﬁ721 // (52)2,03?” 8I’U|2
Dt
2 [[ (@il
1_'_5” // 50 2 2,3n am,u|2
we obtain
@) 2 [[ @rionr < i [ ot
. T =~ (1"‘,6”)2 ]R:lr T n,T
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while from

/R4 IVy(X,.20) // (£9)2020 |V, 0 + 32 // (€9)20287 |V, )2
+// 1V, \Uﬁwﬁwﬁn/ €0(V,£0) - (Vyup 02— of?

12 // €002 0V €0 Ty + 26, / (€9)2020 |V 0

:// v%ﬁn(vvy§°+§ Vyv)2 + (Bn + 1) // (€9)202 ﬁ"|Vyv|2
R4\Dr

200+ ) [ T (T
> Gt (B [ @29l 42 [T Ty o).

we deduce

(12) B2 / /D @l + 28, / [ ) (Tl

Bn / 2
< \%
S B+l Ri‘ y(Xn,T,U)|

Computations similar to those at the beginning of section [3] (we recall that v = Re ¢y,),
leads to

0= %dl(cbk)[xf ot = eRe (i, (0 ol )

L

=Z(X,.20) = 100uX, 212, = EVyx,, 212, = Aelx,, rvI2,

= T(x, 1) — Melx, w0l —/32// (€0)228n
_2p2 // (€0)20280 [V, 2 — 2 // 19, €022
Dr R%

228, / €0(V,€0) - (Vyv, o2~ 1y?
Dr

Oy vT|2
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Therefore we get, using and (4.2)

/ |02 (X, v |2+c/ IVy (X, 20 |2+mc//
-5 / / e JIRGRE
DT DT
= [ VPl — 225, [[ €T, (V0,002
Ri Dt
Py O
> (1 5 ol [ 19088050
= [ VIGe 0 =20 [ 10 a0
R3 R3

rLT

vaT |2

Namely,

l€nvy vl F

<& // IV, €0 2o of? + / VIIE @ ) ? + A / €0 (0 0) 2
Ri R3 R3

Using Fatou’s Lemma and monotone convergence, we can pass to the limit as T" — 400
to get

5n+1

(4.3) *Ilé“0 il 8

<é [[[ marr i [ vige o [ e

where a,, = 8, +1 = (3/2)"
For any M >0,let Ay ={|V| < M}NB,45(yo), A2 = {|V| > M} N B,4s(yo), then, since
Ve L} (U), we have

loc

/ VIIE (o )2n 2 < /A VI (o )2 2 + / VIIES (o )20 2

< [ (f v e
< ME (v1)5r 15 + e(M)|€g (v ) 3

now we take C' > max{(2c)?, M + A\, } and we get

8 <0< L et |2>

+ ane(M)|gn(v4)7 |3

lgnvs 117
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Taking M sufficiently large, that is e(M) sufficiently small, by Sobolev inequality we have

(03 ir s gy + 105 W e gy < Ko (105 o, ey + 12087 )r )

where 2 = 2N/(N — 1) = 3 (here N = 3) and 2* = 2N/(N — 2) = 4 (here N = 4) are the
critical Sobolev exponent for the embedding of H'/2(R?) in LP(R?) and for the embedding
of H'(R*) in LP(R*) and the constant K, depend on n € N .

Finally, since C9 C BY_, we may conclude

[(v4)8" i’zﬁ(B?L) < Kn (””i"||2L?(R+XB?H> + ‘(”J“)??”'i?(li’ﬁfl))

(4.4)
J5 12 ey < Ko (102 2aga, wmo ) + 1005 Bagpn ) -

Then a bootstrap argument can start: since vy € H'(R%) we have vy € LP(RY) for
p € [2,4] and (vy)y € LI(R3) for ¢ € [2,3], hence we can apply with n = 1 to
deduce that (vi)y € L21(BY) = L33/ (BY) and v, € L¥*1 (R, x BY) = LS(R, x BY).
Since 20, = 2fa,,_1 < 2*a,_; we can then apply again and, after n iterations, we
deduce that (v ) € L3G/2"(BY), v, € L*G/2" (R, x BY). Hence we may conclude that
(v4)tr € LP(By(yo)) and vy € LP(R4 x B, (yo)) for all p € [2,+00) .
The same is clearly true for v_ and hence for v = Re ¢y. Analogously we can argue for
Im ¢, and we get the result for o = (d)sr -
(]

Proposition 5. Let ¢ € H'(RY) (and ¢ = (¢r)ir) as in Theorem , Then given any
R > Ry (with Ry given in (h1)) we have ¢ € LP(Ry x (R?\ Br)) and ¢ € LP(R?\ Bg)
for any p € [2,00] .

Proof. By (h1l) we have V € L*(R3 \ Bg,) for some Ry > 0. Take ¢ (and i = (¢ )sr)
and Ay as in Theorem (1} let v = Re ¢.

Take any 0 > 0 and for n € Nlet &,(y) € [0,1] be a cut off function, radial, piecewise linear
and such that &,(y) = 0if |y| < Ro + 0 3125(3)* and &u(y) = 1if [y| > Ro + 6 Yp_y(3)".

Let T > 0, we set v, = min{vy, T} and x,, . (z,y) = & (y)vP" (z,y) where 8, = (3)" — 1.
We introduce also the sets F,, = {y € R? | &,(y) =1}, C, = {y e R3 | [V, &5(y)| = 2(3)" }
and Dy = { (z,y) € RY | vi(z,y) <T}. We have R*\ Br,ys C Fny1 C F, C R?\ Bp,
and Cp41 C F,, for any n € N.

Now we can repeat the estimates in the proof of Proposition (4| to deduce that also in this

case (4.3)) holds, namely

I s&// IV &nl 205
R

where also here a,, = 8, +1 = (3/2)".
Then taking a positive constant C' > max{(3c)?, (Supgs\ g, [V + Ak)} we get

[0S 2 < C (ai / / % 2 + / |5n(vin>ﬁ|2>
Ry xChp R3

and again by Sobolev inequality and recalling that C,, C F,,_1

Qn

1
;n Hgnv.t,_

R [y A
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|(U+)3"'|2Lzﬁ(Fn) + H”i””%?*(RMFn) <C (aiH”i”ﬁz(RerFn—l) + O‘”|(”+)?Tn|2L2(Fn—1)>

Finally, we may conclude

ws) @5 o oy S C (03105 By ) + Ol (05 B )

H5 12 e ey < C (@S0 iy ) + @l (006 B,

Then, exactly as in the proof of Proposition @ a bootstrap argument can start and after n
iterations, we deduce that (vy )y, € L3G3/2"(F,), vy € LYG/2" (R, x F,). Hence we may
conclude that (vy ) € LP(R?\ Bry+s) and vy € LP(Ry x (R3\ Bg,4s)) for all p € [2,00) .

To prove that actually (vy )y € L®(R3\ Bgyis) and v, € L¥(Ry x (R3\ Bg,4s)) we
can argue as follows. In view of we have

2
(P ) SC (304135, gy ) + Ol @058 1))
/. 20
SM(? e2 Qn (maX{HU+||L2an(R+><Fn—1)7|({U+)t’r‘|L2an(Fn_1)}) [e%
Moreover, since

1/2
L2

Qn

1/2H an

05" | 2 < ll0S

and F,, C F,,_1 we have

HUJ“”Q(;;%(&XEL) < o 1780 vl 750, < 2||U+Hio§fin + §||U+H2Lo§?an

< M eV e

max{||vy || p2en (ry x7_1)s [ (V) tr|L20n (7 1)
where the positive constant My > 1 is independent of n.
Hence, recalling also that 2fa,, = 2,41, we get
+ 1
|(U+)tr\L2an+1(Fn) < Mg ever max{||vy || p2en Ry x £ _1)s [(U4)tr| 2200 (P 1) }
L1
||U+||L2“n+1(R+><Fn) < Mg ever max{||vy || p2en Ry x 7 _1)s [(U4)er| 2200 (R 1)}

We set A, = max{||vy||r2en®, xF_1), [(V4)tr|L20n (7, _,)} then we have

1 n

An+1<M0 e\/‘TnA <M010a16 lOFAO

Since
i ﬁl
=0 O{i

then there exists a constant K independent on p such that |(U+)tT‘LP(R3\BRO+5) < K and
vl 2o Ry xR\ BRy4s)) < K for any p > 2 and we deduce that (v )s € L*°(R®\ Bg,+s)
and vy € L®(Ry x (R®\ Bpry+s))-

The same is clearly true for v_ and hence for v = Re ¢y. Analogously we can argue for

Im ¢y, and we get the result for i = (o) -
O
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Now we finally conclude the proof of Theorem [3| as follow
(i) : Recalling that ¢, € H*(R%,C) is a weak solution of the Neumann problem

—02¢p — ANy + mPctr =0  inRY
0
% +Vor = Apr on OR% = R3.

then following [2] we introduce

rla,y) = /0 " onlt,y)dt

we clearly have that ¢, € H((0,7) x R3,C) for any r > 0 and we have (see [5, Proposition
3.9] for the details) that iy is a weak solution of the following Dirichlet problem

=02y, — Ay + mPctYy = f(z,y) inRY
Y =0 on OR% = R3.

where f(z,y) = (A — V(¥))er(y)-
Now let us define

("/}k>odd($7y) = {¢k($,y) z20 f(x,y) x>0

—p(—z,y) =<0 —flzy) <0

It is easy to check that (¥x)eqa € H((—7,7) x R3,C) is a weak solution of the (linear)
second order elliptic problem

and  foaa(w,y) = {

—0%u — cszu +m?ctu = foqq in R%

Since by Proposition foda € LA((=r,7) x (R3\ Bg)) for any q € [2,00], 7 > 0 and R > Ry
we deduce by standard elliptic regularity that (vx)eds € W29((—r,r) x (R3\ Bg)) and hence
in particular ¢y = 9,0, € WH9((0,7) x (R3\ Bg)) .

(ii) : By Sobolev’s embedding 1, € C1*([0,+o0) x (R?\ Bg)) for all a €
we get that ¢y, = 9,10, € CO([0,+00) x (R?\ Bgr)) and ¢ = ¢ (0, -) € C%
any « € [0,1] and R > Ry.

(iii): Since by Proposition [] foga € LI((—r,7) x V) for any ¢ € [2,00), 7 > 0 and V CC U
we deduce by standard elliptic regularity that (1 )eqq € W24((—r,7)xV) hence in particular
b1 = Opthy, € WH4((0,7) x V). Then by the trace Theorem we get ¢y, € Wlf%’q(V) for any
q € [2,00) and V CC U and by Sobolev embedding ¢; € C%%(V) for any « € [0,1).

0,1]. Namely,
(R3\ Bpg) for

Q
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