REGULARITY RESULTS FOR QUASILINEAR ELLIPTIC EQUATIONS IN THE PLANE

LINDA MARIA DE CAVE, LUIGI D'ONOFRIO AND ROBERTA SCHIATTARELLA

Abstract. For a planar domain Ω, we study the Dirichlet problem for the quasilinear elliptic equation

$$
-\operatorname{div} A(x, \nabla v)=f
$$

when f belongs to the Zygmund space $L(\log L)^{\frac{1}{2}}(\log \log \log L)^{\frac{\beta}{2}}(\Omega), \beta \geq 0$. We prove that there exists a unique solution $v \in W_{0}^{1,2}(\Omega)$ with $|\nabla v| \in L^{2}(\log \log \log L)^{\beta}(\Omega)$.

1. Introduction

In this paper we consider the following Dirichlet problem on a bounded open set $\Omega \subset \mathbb{R}^{2}$ with \mathcal{C}^{1} boundary

$$
\begin{cases}\mathcal{A} v=f & \text { in } \Omega \tag{1.1}\\ v=0 & \text { on } \partial \Omega\end{cases}
$$

where \mathcal{A} is the differential operator defined by

$$
\mathcal{A} v=-\operatorname{div} A(x, \nabla v)
$$

Here $A: \Omega \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a Charathéodory mapping, that is

$$
\begin{align*}
& A(\cdot, \xi) \text { is measurable for all } \xi \in \mathbb{R}^{2} \tag{1.2}\\
& A(x, \cdot) \text { is continuous for almost every } x \in \Omega
\end{align*}
$$

Furthermore, we assume that A satisfies the Leray-Lions type conditions, i.e. there exists $K \geq 1$ such that, for almost every $x \in \Omega$ and for any $\xi, \eta \in \mathbb{R}^{2}$, it results

$$
\begin{align*}
\text { i) } & |A(x, \xi)-A(x, \eta)| \leq K|\xi-\eta| \\
i i) & |\xi-\eta|^{2} \leq K\langle A(x, \xi)-A(x, \eta), \xi-\eta\rangle \tag{1.3}\\
i i i) & A(x, 0)=0 .
\end{align*}
$$

2010 Mathematics Subject Classification. Primary 35J62; Secondary 35B65.
Key words and phrases. Gradient regularity, Quasilinear elliptic equations, Zygmund spaces.
Received 09/10/2014, accepted 14/05/2015.
Research supported by the Gruppo Nazionale per l' Analisi Matematica, la Probabilita' e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

The first Author was partially supported by L.R. n. 5/2008, Dipartimento di Matematica e Applicazioni "R. Caccioppoli", Università degli Studi di Napoli "Federico II".

In [17], under the assumptions (1.2) and (1.3), the Authors proved for the problem (1.1) with $f \in L^{1}(\Omega)$ an existence and uniqueness theorem of the solution in the Grand Sobolev space $W_{0}^{1,2)}(\Omega)$. This is the space of functions $v \in W_{0}^{1,1}(\Omega)$ whose gradient satisfies

$$
\sup _{0<\varepsilon \leq 1}\left[\varepsilon \int_{\Omega}|\nabla v|^{2-\varepsilon} d x\right]^{\frac{1}{2-\varepsilon}}=\|v\|_{W^{1,2)}(\Omega)}<\infty .
$$

We emphasize that $W_{0}^{1,2)}(\Omega)$ is a function space slightly larger than $W_{0}^{1,2}(\Omega)$.
The critical Zygmund class "close" to L^{1} for f such that the solution v has finite energy, i.e. $v \in W_{0}^{1,2}(\Omega)$, is $L(\log L)^{\frac{1}{2}}(\Omega)$. This derives from the Trudinger embedding (see [23] and Section 2 for definitions)

$$
W_{0}^{1,2}(\Omega) \quad \leftrightarrow \quad \exp _{2}(\Omega)
$$

that implies

$$
L(\log L)^{\frac{1}{2}}(\Omega) \hookrightarrow W^{-1,2}(\Omega)
$$

as follows by a duality relation in the usual topological sense (see [22]).
Further regularity derives from the stronger assumption $f \in L \log L(\Omega)$. Precisely, (see [2], [7]):

$$
f \in L \log L(\Omega) \Rightarrow|\nabla v| \in L^{2} \log L(\Omega)
$$

By the embedding theorems for Orlicz-Sobolev spaces (see [8], [14]), the solution v belongs to the double exponential space $L^{\Phi}(\Omega)$ with $\Phi(t)=\exp \left(\exp \left(t^{2}\right)\right)-e$. In [3] the Authors covered previous results by proving, for $\frac{1}{2} \leq \delta \leq 1$, the following estimate:

$$
\|\nabla v\|_{L^{2}(\log L)^{2 \delta-1}(\Omega)} \leq C(K, \delta)\|f\|_{L(\log L)^{\delta}(\Omega)}
$$

If f belongs to a space slightly smaller than $L(\log L)^{\frac{1}{2}}(\Omega)$, given by $L(\log L)^{\frac{1}{2}}(\log \log L)^{\frac{\beta}{2}}(\Omega)$ with $0 \leq \beta<2$, there exists a unique solution v to the Dirichlet problem (1.1) such that $|\nabla v| \in L^{2}(\log \log L)^{\beta}(\Omega)$ with the estimate

$$
\|\nabla v\|_{L^{2}(\log \log L)^{\beta}(\Omega)} \leq C(K, \beta)\|f\|_{L(\log L)^{\frac{1}{2}}(\log \log L)^{\frac{\beta}{2}}(\Omega)} .
$$

(see [13]). It generalizes a result of [24] obtained for $\beta=1$.
In this paper we prove the following
Main Theorem. Let $A=A(x, \xi)$ satisfy (1.2) and (1.3) and let $\beta \geq 0$. Then, for $f \in$ $L(\log L)^{\frac{1}{2}}(\log \log \log L)^{\frac{\beta}{2}}(\Omega)$ there exists a unique solution $v \in W_{0}^{1,2}(\Omega)$ to the Dirichlet problem (1.1) with $|\nabla v| \in L^{2}(\log \log \log L)^{\beta}(\Omega)$ and the following estimate holds

$$
\|\nabla v\|_{L^{2}(\log \log \log L)^{\beta}(\Omega)} \leq C(K, \beta)\|f\|_{L(\log L)^{\frac{1}{2}}(\log \log \log L)^{\frac{\beta}{2}}(\Omega)}
$$

For the proof, one of the main tool is a regularity result for elliptic equations with right hand side in divergence form

$$
-\mathcal{A} \varphi=\operatorname{div} \chi
$$

slightly below the natural space $\chi \in L^{2}$. Following an idea of [16], we use the well known estimate

$$
\|\nabla \varphi\|_{L^{2-\varepsilon}(\Omega)} \leq c(K)\|\chi\|_{L^{2-\varepsilon}(\Omega)} \quad|\varepsilon| \leq \varepsilon_{0}
$$

to deduce

$$
\|\nabla \varphi\|_{L^{2}(\log \log \log L)^{-\beta}(\Omega)} \leq c(K, \beta)\|\chi\|_{L^{2}(\log \log \log L)^{-\beta}(\Omega)} .
$$

Similar results are proved in [12] for $f \in L(\log L)^{\delta}(\log \log \log L)^{\frac{\beta}{2}}(\Omega)$ for $\delta>\frac{1}{2}$ and $\beta>2 \delta-1$. When the datum is a measure we refer the interested reader to [6], [20], [21] and the reference therein.

2. Preliminaries

In the present Section we will treat some function spaces and related associate spaces. Let Ω be a bounded domain in $\mathbb{R}^{n}, n \geq 2$ and $X(\Omega)$ be a Banach function space endowed with the norm $\|\cdot\|_{X(\Omega)}$. The Banach function space $(X(\Omega))^{\prime}$ whose norm is given by

$$
\|g\|_{(X(\Omega))^{\prime}}=\sup \left\{\left|\int_{\Omega} f g d x\right| \text { s.t. } f \in X(\Omega),\|f\|_{X(\Omega)} \leq 1\right\}
$$

is called the associate space of $X(\Omega)$.
A function u belongs to the Lebesgue space $L^{p}(\Omega)$ with $1 \leq p<\infty$ if, and only if,

$$
\|u\|_{L^{p}(\Omega)}=\left(f_{\Omega}|u|^{p} d x\right)^{\frac{1}{p}}<+\infty
$$

where $f_{\Omega}=\frac{1}{|\Omega|} \int_{\Omega}$.
Now we recall some useful function spaces slightly larger than classical Lebesgue spaces.
2.1. Grand Lebesgue spaces. For $1<p<\infty$, let us consider the class, denoted by $L^{p)}(\Omega)$, consisting of all measurable functions $u \in \bigcap_{1 \leq q<p} L^{q}(\Omega)$ such that

$$
\sup _{0<\varepsilon \leq p-1}\left\{\varepsilon f_{\Omega}|u(x)|^{p-\varepsilon}\right\}^{\frac{1}{p-\varepsilon}}<+\infty
$$

which was introduced in [18]. $L^{p)}(\Omega)$ becomes a Banach space, the Grand Lebesgue space $L^{p)}(\Omega)$, equipped with the norm

$$
\|u\|_{L^{p)}(\Omega)}=\sup _{0<\varepsilon \leq p-1} \varepsilon^{\frac{1}{p}}\left\{f_{\Omega}|u(x)|^{p-\varepsilon}\right\}^{\frac{1}{p-\varepsilon}} .
$$

Moreover, $\|u\|_{L^{p)}(\Omega)}$ is equivalent to

$$
\sup _{0<\varepsilon \leq p-1}\left\{\varepsilon f_{\Omega}|u(x)|^{p-\varepsilon}\right\}^{\frac{1}{p-\varepsilon}}
$$

In general, if $0<\alpha<\infty$, we can define the space $L^{\alpha, p}(\Omega)$ as the space of all measurable functions $u \in \bigcap_{1 \leq q<p} L^{q}(\Omega)$ such that

$$
\|u\|_{L^{\alpha, p)}(\Omega)}=\sup _{0<\varepsilon \leq p-1}\left\{\varepsilon^{\frac{\alpha}{p}}\|u\|_{p-\varepsilon}\right\}<+\infty .
$$

2.2. Orlicz spaces. Let Ω be an open set in \mathbb{R}^{n}, with $n \geq 2$. A function $\Phi:[0,+\infty) \rightarrow$ $[0,+\infty)$ will be called a Young function if it is convex, left-continuous and vanishes at 0 ; thus any Young function Φ admits the representation

$$
\Phi(t)=\int_{0}^{t} \phi(s) d s \quad \text { for } t \geq 0
$$

where $\phi:[0,+\infty) \rightarrow[0,+\infty)$ is a non decreasing, left- continuous function, which is neither identically equal to 0 nor to ∞. The Orlicz space associated to Φ, named $L^{\Phi}(\Omega)$, consists of all Lebesgue measurable functions $f: \Omega \rightarrow \mathbb{R}$ such that

$$
\int_{\Omega} \Phi(\lambda|f|)<\infty \quad \text { for some } \lambda=\lambda(f)>0
$$

$L^{\Phi}(\Omega)$ is a Banach space equipped with the Luxemburg norm

$$
\|f\|_{L^{\Phi}(\Omega)}=\inf \left\{\frac{1}{\lambda}: \int_{\Omega} \Phi(\lambda|f|) \leq 1\right\} .
$$

Examples of Orlicz spaces:

1) If $\Phi(t)=t^{p}$ for $1 \leq p<\infty$ then $L^{\Phi}(\Omega)$ is the classical Lebesgue space $L^{p}(\Omega)$.
2) If $\Phi(t)=t^{p}(\log (a+t))^{q}$ with either $p>1$ and $q \in \mathbb{R}$ or $p=1$ and $q \geq 0$, where $a \geq e$ is a suitable large constant, then $L^{\Phi}(\Omega)$ is the Zygmund space denoted by $L^{p}(\log L)^{q}(\Omega)$.
3) If $\Phi(t)=t^{p}(\log \log (a+t))^{q}$ with either $p>1$ and $q \in \mathbb{R}$ or $p=1$ and $q \geq 0$, where $a \geq e^{e}$, then $L^{\Phi}(\Omega)$ is the space $L^{p}(\log \log L)^{q}(\Omega)$.
4) If $\Phi(t)=t^{p}(\log \log \log (a+t))^{q}$ with either $p>1$ and $q \in \mathbb{R}$ or $p=1$ and $q \geq 0$ where $a \geq e^{e^{e}}$, then $L^{\Phi}(\Omega)$ is the space $L^{p}(\log \log \log L)^{q}(\Omega)$.
5) If $\Phi(t)=e^{t^{a}}-1$ and $a>0$, then $L^{\Phi}(\Omega)$ is the space of a-exponentially integrable functions $\operatorname{EXP}_{a}(\Omega)$. We denote by $\exp _{a}(\Omega)$ the closure of $L^{\infty}(\Omega)$ in $\operatorname{EXP}_{a}(\Omega)$.
We have the following relations between Grand Lebesgue and Orlicz spaces:

$$
L^{p}(\Omega) \subset \frac{L^{p}}{\log L}(\Omega) \subset L^{p)}(\Omega) \subset \bigcap_{\alpha>1} \frac{L^{p}}{(\log L)^{\alpha}}(\Omega)
$$

The Young complementary function is given by

$$
\begin{equation*}
\tilde{\Phi}(t)=\sup \{s t-\Phi(s): s>0\}=\int_{0}^{t} \phi^{-1}(s) d s \tag{2.1}
\end{equation*}
$$

where

$$
\phi^{-1}(s)=\sup \{r: \phi(r) \leq s\} .
$$

Moreover, the following Hölder's type inequality holds

$$
\left|\int_{\Omega} f(x) g(x) d x\right| \leq 2\|f\|_{L^{\Phi}(\Omega)}\|g\|_{L^{\tilde{\Phi}}(\Omega)}
$$

for $f \in L^{\Phi}(\Omega)$ and $g \in L^{\tilde{\Phi}}(\Omega)$.
Given two Young functions Φ and Ψ, we will say that Ψ dominates Φ globally (respectively near infinity), if there exists a constant $k>0$ such that

$$
\Phi(t) \leq \Psi(k t) \text { for all } t \geq 0\left(\text { respectively for all } t \geq t_{0} \text { for some } t_{0}>0\right)
$$

moreover Φ and Ψ are equivalent globally (respectively near infinity, $\Phi \cong \Psi$) if each dominates the other globally (respectively near infinity). If $\widetilde{\Phi}$ and $\widetilde{\Psi}$ are the complementary

Young functions of, respectively, Φ and Ψ, then Ψ dominates Φ globally (or near infinity) if and only if $\widetilde{\Phi}$ dominates $\widetilde{\Psi}$ globally (or near infinity). Similarly, Φ and Ψ are equivalent if and only if $\widetilde{\Phi}$ and $\widetilde{\Psi}$ are equivalent. We have the following result.

Theorem 1. The continuous embedding $L^{\Psi}(\Omega) \leftrightarrow L^{\Phi}(\Omega)$ holds if and only if either Ψ dominates Φ globally or Ψ dominates Φ near infinity and Ω has finite measure.

Here below we recall the explicit expression of the associate of some Orlicz spaces (see [4], [14], [15]).

Theorem 2. Let $\Omega \subset \mathbb{R}^{n}$ an open set. If $1<p<\infty, q \in \mathbb{R}$, then

- $\left(L^{p}(\log L)^{q}(\Omega)\right)^{\prime} \cong L^{p^{\prime}}(\log L)^{-\frac{q}{p-1}}(\Omega)$
- $\left(L^{p}(\log \log L)^{q}(\Omega)\right)^{\prime} \cong L^{p^{\prime}}(\log \log L)^{-\frac{q}{p-1}}(\Omega)$
- $\left(L^{p}(\log \log \log L)^{q}(\Omega)\right)^{\prime} \cong L^{p^{\prime}}(\log \log \log L)^{-\frac{q}{p-1}}(\Omega)$
where p^{\prime} is the conjugate exponent of p, i.e. $\frac{1}{p}+\frac{1}{p^{\prime}}=1$.
If $p=1$ and $q>0$ then
- $\left(L(\log L)^{q}(\Omega)\right)^{\prime} \cong \operatorname{EXP}_{\frac{1}{q}}(\Omega)$.

Finally we recall the definition of the Orlicz-Sobolev spaces $W^{1, \Psi}(\Omega)$ and $W_{0}^{1, \Psi}(\Omega)$ (see [1], [8], [9], [22]). The space $W^{1, \Psi}(\Omega)$ consists of the equivalence classes of functions u in $L^{\Psi}(\Omega)$ such that the length of the distributional gradient $|\nabla u|$ belongs to $L^{\Psi}(\Omega)$. It is a Banach space with respect to the norm given by

$$
\|u\|_{W^{1, \Psi}(\Omega)}=\|u\|_{L^{\Psi}(\Omega)}+\|\nabla u\|_{L^{\Psi}(\Omega)} .
$$

As in the case of the ordinary Sobolev space, $W_{0}^{1, \Psi}(\Omega)$ coincides with the closure of $C_{0}^{\infty}(\Omega)$ in $W^{1, \Psi}(\Omega)$.
2.3. Orlicz-Sobolev embeddings. For the embedding Theorem in the setting of Orlicz Sobolev space, we need the following:

Lemma 1. Let $\Phi(t)=\exp \left\{\frac{t^{2}}{(\log (e+\log (e+t)))^{\beta}}\right\}-1$ with $\beta \in \mathbb{R}$. Then

$$
\tilde{\Phi}(t) \cong t(\log t)^{\frac{1}{2}}(\log \log \log t)^{\frac{\beta}{2}}
$$

Proof. As Φ is a Young function, by definition we have

$$
\Phi(t)=\int_{0}^{t} \phi(s) d s
$$

where

$$
\phi(s) \cong \exp \left\{\frac{s^{2}}{(\log \log s)^{\beta}}\right\} \cdot\left[\frac{2 s}{(\log \log s)^{\beta}}-\frac{\beta s}{(\log s) \cdot(\log \log s)^{\beta+1}}\right] .
$$

For large s we have

$$
\phi(s) \cong \exp \left\{\frac{s^{2}}{(\log \log s)^{\beta}}\right\} \cdot \frac{2 s}{(\log \log s)^{\beta}}
$$

and there exists a suitable constant $c>1$ such that

$$
\begin{aligned}
\exp \left\{\frac{s^{2}}{(\log \log s)^{\beta}}\right\} & \leq \exp \left\{\frac{s^{2}}{(\log \log s)^{\beta}}\right\} \cdot \frac{2 s}{(\log \log s)^{\beta}} \\
& \leq \exp \left\{\frac{(c s)^{2}}{(\log \log (c s))^{\beta}}\right\}
\end{aligned}
$$

Then it is not difficult to check that near infinity it results

$$
\phi^{-1}(r) \cong(\log r)^{\frac{1}{2}}(\log \log \log r)^{\frac{\beta}{2}} .
$$

By (2.1), we obtain that

$$
\tilde{\Phi}(y)=\int_{0}^{y} \phi^{-1}(r) d r \cong y(\log y)^{\frac{1}{2}}(\log \log \log y)^{\frac{\beta}{2}}
$$

Given a Young function Ψ such that

$$
\int_{0}\left(\frac{r}{\Psi(r)}\right) d r<\infty
$$

we define $\Phi:[0,+\infty) \rightarrow[0,+\infty)$ as

$$
\begin{equation*}
\Phi(s)=\Psi \circ H_{2}^{-1}(s) \quad \text { for } s \geq 0 \tag{2.2}
\end{equation*}
$$

where $H_{2}^{-1}(s)$ is the (generalized) left continuous inverse of the function $H_{2}:[0,+\infty) \rightarrow$ $[0,+\infty)$ given by

$$
\begin{equation*}
H_{2}(r)=\left(\int_{0}^{r}\left(\frac{t}{\Psi(t)}\right) d t\right)^{\frac{1}{2}} \quad \text { for } r \geq 0 \tag{2.3}
\end{equation*}
$$

In [10] and in [11], the Author showed that Φ is a Young function and that the following form of Sobolev embedding theorem holds

$$
\|u\|_{L^{\Phi}(\Omega)} \leq C\|\nabla u\|_{L^{\Psi}(\Omega)}
$$

for every function u in the Orlicz-Sobolev space $W_{0}^{1, \Psi}(\Omega)$. As an application, we have the following result.

Lemma 2. Let $\Omega \subset \mathbb{R}^{2}$ be an open bounded set with \mathcal{C}^{1} boundary. If we consider Young functions $\Psi(t)$

$$
\Psi(t) \cong t^{2}(\log \log \log t)^{-\beta}
$$

with $\beta \in \mathbb{R}$, then

$$
W^{1, \Psi}(\Omega) \hookrightarrow L^{\Phi}(\Omega)
$$

where

$$
\Phi(s) \cong e^{s^{2}(\log \log s)^{-\beta}} .
$$

Proof. By (2.3) we have that

$$
H_{2}(r)=\left(\int_{0}^{r} \frac{(\log \log \log t)^{\beta}}{t} d t\right)^{\frac{1}{2}} \cong(\log r)^{\frac{1}{2}}(\log \log \log r)^{\frac{\beta}{2}}
$$

Moreover, as showed in the proof of Lemma 1, the inverse function $H_{2}^{-1}(s)$ is equivalent near infinity to

$$
e^{s^{2}(\log \log s)^{-\beta}} .
$$

By (2.2), we obtain that

$$
\Phi(s) \cong e^{2 s^{2}(\log \log s)^{-\beta}}(\log \log s)^{-\beta} \cong e^{s^{2}(\log \log s)^{-\beta}}
$$

and we conclude that

$$
W^{1, \Psi}(\Omega) \hookrightarrow L^{\Phi}(\Omega)
$$

3. Equivalent norm on the Zygmund spaces $L^{q}(\log \log \log L)^{-\beta}(\Omega)$

We shall introduce an equivalent norm on $L^{q}(\log \log \log L)^{-\beta}(\Omega)$ with $\beta>0$, which involves the norms in $L^{q-\varepsilon}(\Omega)$, for $1<q<\infty$ and $0<\varepsilon \leq q-1$. This is based on a method recently suggested by L. Greco et al. (see [16]). If f is a measurable function on Ω, we set

$$
\begin{equation*}
\|f \mid\|_{L^{q}(\log \log \log L)^{-\beta}(\Omega)}=\left\{\int_{0}^{\varepsilon_{0}}(\varepsilon|\log \varepsilon|)^{-1}(1+\log |\log \varepsilon|)^{-(\beta+1)}\|f\|_{q-\varepsilon}^{q} d \varepsilon\right\}^{\frac{1}{q}} . \tag{3.1}
\end{equation*}
$$

Here $\left.\left.\varepsilon_{0} \epsilon\right] 0, q-1\right]$ is fixed.
Theorem 3. We have $f \in L^{q}(\log \log \log L)^{-\beta}(\Omega)$ if and only if

$$
\|f \mid\|_{L^{q}(\log \log \log L)^{-\beta}(\Omega)}<+\infty
$$

Moreover, $\left|\left||\cdot| \|_{L^{q}(\log \log \log L)^{-\beta}(\Omega)}\right.\right.$ is a norm equivalent to the Luxemburg one, that is, there exist constants $C_{i}=C_{i}\left(q, \beta, \varepsilon_{0}\right), i=1,2$ such that for all $f \in L^{q}(\log \log \log L)^{-\beta}(\Omega)$ it results

$$
\begin{equation*}
C_{1}\|f\|_{L^{q}(\log \log \log L)^{-\beta}(\Omega)} \leq\|f \mid\|_{L^{q}(\log \log \log L)^{-\beta}(\Omega)} \leq C_{2}\|f\|_{L^{q}(\log \log \log L)^{-\beta}(\Omega)} \tag{3.2}
\end{equation*}
$$

Now we recall the following standard inequalities (see [16], [13]).
Lemma 3. If $b \geq e, \beta>0$, we have

$$
(\log b)^{-\beta} \frac{\varepsilon_{0}^{\beta}}{\beta} e^{-\varepsilon_{0}} \leq \int_{0}^{\varepsilon_{0}} \varepsilon^{\beta-1} b^{-\varepsilon} d \varepsilon \leq(\log b)^{-\beta} \frac{\Gamma(\beta+1)}{\beta},
$$

where Γ is the Euler Gamma function.
As a consequence of the previous Lemma, the following results hold.
Corollary 1. Let $0<\delta<\frac{1}{e}, \beta>0$. Then we have

$$
\frac{1}{\Gamma(\beta+1)} \int_{0}^{\varepsilon_{0}} \varepsilon^{\beta-1} \delta^{\varepsilon} d \varepsilon \leq \frac{|\log \delta|^{-\beta}}{\beta} \leq\left(\int_{0}^{\varepsilon_{0}} \varepsilon^{\beta-1} \delta^{\varepsilon} d \varepsilon\right) \frac{e^{\varepsilon_{0}}}{\varepsilon_{0}^{\beta}} .
$$

Corollary 2. Let $a \geq e^{e}, M, \beta>0$, then there exist constants $C_{i}=C_{i}\left(\beta, \varepsilon_{0}\right), i=3,4$ such that

$$
\begin{aligned}
\frac{C_{3}}{\beta \Gamma(\beta+1)}(\log \log (a+M))^{-\beta} & \leq \int_{0}^{\varepsilon_{0}}|\log \sigma|^{-(\beta+1)} \sigma^{-1}(a+M)^{-\sigma} d \sigma \\
& \leq C_{4}(\log \log (a+M))^{-\beta} \frac{(\beta+1)}{\beta} \Gamma(\beta+1)
\end{aligned}
$$

We shall need the following Lemma.
Lemma 4. Let $a \geq e^{e^{e}}, \beta>0$. Then there exist constants $C_{i}=C_{i}\left(\beta, \varepsilon_{0}\right), i=5,6$ such that

$$
\begin{align*}
C_{5}(\log \log \log (a+M))^{-\beta} & \leq \int_{0}^{\varepsilon_{0}}(1+\log |\log \sigma|)^{-(\beta+1)}(\sigma|\log \sigma|)^{-1}(a+M)^{-\sigma} d \sigma \tag{3.3}\\
& \leq C_{6}(\log \log \log (a+M))^{-\beta}
\end{align*}
$$

for every measurable function $f: \Omega \rightarrow \mathbb{R}$.
Proof. We start by proving the following

$$
\begin{equation*}
\int_{0}^{\varepsilon_{0}}(1+\log |\log \sigma|)^{-(\beta+1)}(\sigma|\log \sigma|)^{-1}(a+M)^{-\sigma} d \sigma \leq C_{6}(\log \log \log (a+M))^{-\beta} \tag{3.4}
\end{equation*}
$$

Since $\sigma \leq \frac{1}{e}$, we can apply Lemma 3 with the choice $b=\left|\log \sigma^{e}\right|$ and so, applying also Corollary 2, we obtain

$$
\begin{array}{r}
\int_{0}^{\varepsilon_{0}}(1+\log |\log \sigma|)^{-(\beta+1)} \sigma^{-1}|\log \sigma|^{-1}(a+M)^{-\sigma} d \sigma \leq \\
\leq \frac{(\beta+1) e^{\varepsilon_{0}}}{\varepsilon_{0}^{(\beta+1)}} \int_{0}^{\varepsilon_{0}} \varepsilon^{\beta}\left(\int_{0}^{\varepsilon_{0}} e^{-\varepsilon}|\log \sigma|^{-(\varepsilon+1)} \sigma^{-1}(a+M)^{-\sigma} d \sigma\right) d \varepsilon \leq \\
\leq C_{4} \frac{(\beta+1) e^{\varepsilon_{0}}}{\varepsilon_{0}^{(\beta+1)}} \int_{0}^{\varepsilon_{0}} \varepsilon^{\beta} \frac{(\varepsilon+1) \Gamma(\varepsilon+1)}{\varepsilon}(\log \log (a+M))^{-\varepsilon} d \varepsilon
\end{array}
$$

Since $\varepsilon+1<\varepsilon_{0}+1$ and $\lim _{\varepsilon \rightarrow 0} \Gamma(\varepsilon+1)=1$, we have

$$
\begin{aligned}
& \int_{0}^{\varepsilon_{0}}(1+\log |\log \sigma|)^{-(\beta+1)} \sigma^{-1}|\log \sigma|^{-1}(a+M)^{-\sigma} d \sigma \leq \\
& \quad \leq C\left(\varepsilon_{0}\right) \frac{(\beta+1) e^{\varepsilon_{0}}}{\varepsilon_{0}^{(\beta+1)}} \int_{0}^{\varepsilon_{0}} \varepsilon^{\beta-1}(\log \log (a+M))^{-\varepsilon} d \varepsilon
\end{aligned}
$$

Applying the first inequality of Corollary 1 with the choice $\delta=(\log \log (a+M))^{-1}$, we obtain (3.4).

To prove the first inequality in (3.3), we apply Lemma 3 with the choice $b=\log \log (a+M)$ and the first inequality of Corollary 2 , obtaining

$$
\begin{aligned}
& (\log \log \log (a+M))^{-\beta} \leq \frac{\beta e^{\varepsilon_{0}}}{\varepsilon_{0}^{\beta}} \int_{0}^{\varepsilon_{0}} \varepsilon^{\beta-1}(\log \log (a+M))^{-\varepsilon} d \varepsilon \leq \\
\leq & \frac{\beta e^{\varepsilon_{0}}}{\varepsilon_{0}^{\beta}} \frac{1}{C_{3}} \int_{0}^{\varepsilon_{0}} \varepsilon^{\beta} \Gamma(\varepsilon+1)\left(\int_{0}^{\varepsilon_{0}}|\log \sigma|^{-(\varepsilon+1)} \sigma^{-1}(a+M)^{-\sigma} d \sigma\right) d \varepsilon \leq \\
& \leq C\left(\varepsilon_{0}\right) \frac{\beta e^{\varepsilon_{0}}}{\varepsilon_{0}^{\beta}} \int_{0}^{\varepsilon_{0}}|\log \sigma|^{-1} \sigma^{-1}(a+M)^{-\sigma}\left(\int_{0}^{\varepsilon_{0}} \varepsilon^{\beta}|\log \sigma|^{-\varepsilon} d \varepsilon\right) d \sigma
\end{aligned}
$$

Applying again Lemma 3 with the choice $b=\left|\log \sigma^{e}\right|$, we find

$$
\begin{gathered}
(\log \log \log (a+M))^{-\beta} \leq \\
\leq C\left(\varepsilon_{0}\right) \frac{\beta e^{2 \varepsilon_{0}} \Gamma(\beta+2)}{\varepsilon_{0}^{\beta}(\beta+1)} \int_{0}^{\varepsilon_{0}}(1+\log |\log \sigma|)^{-(\beta+1)}|\log \sigma|^{-1} \sigma^{-1}(a+M)^{-\sigma} d \sigma
\end{gathered}
$$

Now we are in position to prove Theorem 3.
Proof of Theorem 3. It is easy to check that $\mid\|f\|_{L^{q}(\log \log \log L)^{-\beta}(\Omega)}$, defined by (3.1), is a norm on $L^{q}(\log \log \log L)^{-\beta}(\Omega)$.
Moreover, for any measurable function f and for a.e. $x \in \Omega$, if $a \geq e^{e^{e}}$ we have

$$
|f|^{q}(a+|f|)^{-\varepsilon} \leq|f|^{q-\varepsilon} \leq 2^{q-1}\left[a^{q}+|f|^{q}(a+|f|)^{-\varepsilon}\right] .
$$

Integrating over Ω we get

$$
f_{\Omega}|f|^{q}(a+|f|)^{-\varepsilon} d x \leq\|f\|_{q-\varepsilon}^{q-\varepsilon} \leq 2^{q-1} a^{q}+2^{q-1} f_{\Omega}|f|^{q}(a+|f|)^{-\varepsilon} d x .
$$

This implies

$$
\begin{aligned}
\int_{0}^{\varepsilon_{0}} & (1+\log |\log \varepsilon|)^{-(\beta+1)}(\varepsilon|\log \varepsilon|)^{-1}\left[f_{\Omega}|f|^{q}(a+|f|)^{-\varepsilon} d x\right] d \varepsilon \leq \\
& \leq \int_{0}^{\varepsilon_{0}}(1+\log |\log \varepsilon|)^{-(\beta+1)}(\varepsilon|\log \varepsilon|)^{-1}| | f \|_{q-\varepsilon}^{q-\varepsilon} d \varepsilon \\
& \leq 2^{q-1} a^{q} \int_{0}^{\varepsilon_{0}}(1+\log |\log \varepsilon|)^{-(\beta+1)}(\varepsilon|\log \varepsilon|)^{-1} d \varepsilon+ \\
& +2^{q-1} \int_{0}^{\varepsilon_{0}}(1+\log |\log \varepsilon|)^{-(\beta+1)}(\varepsilon|\log \varepsilon|)^{-1}\left[f_{\Omega}|f|^{q}(a+|f|)^{-\varepsilon} d x\right] d \varepsilon
\end{aligned}
$$

Applying Lemma 4 with $M=|f|$ we have

$$
\begin{aligned}
C_{5} f_{\Omega} & |f|^{q}(\log \log \log (a+|f|))^{-\beta} d x \leq \\
& \leq f_{\Omega}|f|^{q}\left[\int_{0}^{\varepsilon_{0}}(1+\log |\log \varepsilon|)^{-(\beta+1)}(\varepsilon|\log \varepsilon|)^{-1}(a+|f|)^{-\varepsilon} d \varepsilon\right]= \\
& =\int_{0}^{\varepsilon_{0}}(1+\log |\log \varepsilon|)^{-(\beta+1)}(\varepsilon|\log \varepsilon|)^{-1}\left[f_{\Omega}|f|^{q}(a+|f|)^{-\varepsilon} d x\right] d \varepsilon \leq \\
& \leq \int_{0}^{\varepsilon_{0}}(1+\log |\log \varepsilon|)^{-(\beta+1)}(\varepsilon|\log \varepsilon|)^{-1}| | f \|_{q-\varepsilon}^{q-\varepsilon} d \varepsilon \\
& \leq 2^{q-1} a^{q} \int_{0}^{\varepsilon_{0}}(1+\log |\log \varepsilon|)^{-(\beta+1)}(\varepsilon|\log \varepsilon|)^{-1} d \varepsilon+ \\
& +2^{q-1} \int_{0}^{\varepsilon_{0}}(1+\log |\log \varepsilon|)^{-(\beta+1)}(\varepsilon|\log \varepsilon|)^{-1}\left[f_{\Omega}|f|^{q}(a+|f|)^{-\varepsilon} d x\right] d \varepsilon \\
& \leq 2^{q-1} a^{q} \frac{\left(1+\log \left|\log \varepsilon_{0}\right|\right)^{-\beta}}{\beta}+2^{q-1} C_{6} f_{\Omega}|f|^{q}(\log \log \log (a+|f|))^{-\beta} d x
\end{aligned}
$$

Then we get

$$
\begin{align*}
& C_{5} f_{\Omega}|f|^{q}(\log \log \log (a+|f|))^{-\beta} d x \leq \\
& \leq\left.\int_{0}^{\varepsilon_{0}}(1+\log |\log \varepsilon|)^{-(\beta+1)}(\varepsilon|\log \varepsilon|)^{-1}| | f\right|_{q-\varepsilon} ^{q-\varepsilon} d \varepsilon \leq \tag{3.5}\\
& \leq C_{7}+C_{8} f_{\Omega}|f|^{q}(\log \log \log (a+|f|))^{-\beta} d x
\end{align*}
$$

Let $f: \Omega \rightarrow \mathbb{R}$ be a measurable function, such that $\left\|\|f\|_{L^{q}(\log \log \log L)^{-\beta}(\Omega)}\right.$ is finite. Since

$$
\|f\|_{q-\varepsilon}^{q-\varepsilon} \leq\|f\|_{q-\varepsilon}^{q}+1
$$

by the first inequality in (3.5) we get that $f \in L^{q}(\log \log \log L)^{-\beta}(\Omega)$ and, moreover, if $\mid\|f\|_{L^{q}(\log \log \log L)^{-\beta}(\Omega)}=1$, it results

$$
f_{\Omega}|f|^{q}(\log \log \log (a+|f|))^{-\beta} d x \leq C_{9}
$$

where C_{9} is a constant independent on f. By homogeneity, for any measurable f, we get

$$
\|f\|_{L^{q}(\log \log \log L)^{-\beta}(\Omega)} \leq C_{9}\|f\|_{L^{q}(\log \log \log L)^{-\beta}(\Omega)}
$$

On the other hand, if $f \in L^{q}(\log \log \log L)^{-\beta}(\Omega)$, i.e. if $\|f\|_{L^{q}(\log \log \log L)^{-\beta}(\Omega)}$ is finite, there exists a constant C_{10} such that

$$
\begin{equation*}
\|f\|_{L^{q-\varepsilon}(\Omega)} \leq C_{10} \varepsilon^{-\frac{\alpha}{q}}\|f\|_{L^{q}(\log \log \log L)^{-\beta}(\Omega)} \tag{3.6}
\end{equation*}
$$

as the following embeddings hold:

$$
\left.L^{q}(\log \log \log L)^{-\beta}(\Omega) \subset L^{q}(\log \log L)\right)^{-\delta}(\Omega) \subset L^{q}(\log L)^{-\gamma}(\Omega) \subset L^{\alpha, q)}(\Omega)
$$

for any $\delta, \gamma, \alpha, \beta>0$. By (3.6) we get

$$
\begin{equation*}
\|f\|_{q-\varepsilon}^{q} \leq C_{11}\|f\|_{q-\varepsilon}^{q-\varepsilon}\|f\|_{L^{q}(\log \log \log L)^{-\beta}(\Omega)}^{\varepsilon} \tag{3.7}
\end{equation*}
$$

hence, by (3.5) we obtain that $\left\|\|f\|_{L^{q}(\log \log \log L)^{-\beta}(\Omega)}<+\infty\right.$ and if $\| f \|_{L^{q}(\log \log \log L)^{-\beta}(\Omega)}=1$, integrating (3.7) and using (3.5), we deduce that

$$
\||f|\|_{L^{q}(\log \log \log L)^{-\beta}(\Omega)}<C_{12},
$$

where the constant C_{12} is independent on f. By homogeneity we conclude the proof, obtaining

$$
\|f \mid\|_{L^{q}(\log \log \log L)^{-\beta}(\Omega)}<C_{12}\|f\|_{L^{q}(\log \log \log L)^{-\beta}(\Omega)} .
$$

4. Proof of Main Theorem

In this Section we will prove Main Theorem stated in the Introduction. As already hinted, we will use a regularity result for elliptic equations with right hand side in divergence form that we will apply to a linear problem. Actually we will give a stability estimate for equations of Leray-Lions type whose interest is independent from our context. Exactly, using the equivalence given by Theorem 3 and a well known result contained in [17], we deduce the following.

Theorem 4. Let $A=A(x, \xi)$ be a Leray-Lions mapping that satisfies (1.3). Then, if $\beta>0$, for $i=1,2$ and for any $\underline{\chi}_{i} \in L^{2}(\log \log \log L)^{-\beta}\left(\Omega ; \mathbb{R}^{2}\right)$, there exists a unique solution φ_{i} to the Dirichlet problem

$$
\left\{\begin{array}{l}
\operatorname{div} A\left(x, \nabla \varphi_{i}\right)=\operatorname{div} \underline{\chi}_{i} \quad \text { in } \Omega \tag{4.1}\\
\varphi_{i} \in W_{0}^{1,1}(\Omega) .
\end{array}\right.
$$

Moreover it results

$$
\left\|\nabla \varphi_{1}-\nabla \varphi_{2}\right\|_{L^{2}(\log \log \log L)^{-\beta}(\Omega)} \leq C\left\|_{1}-\underline{\chi}_{2}\right\|_{L^{2}(\log \log \log L)^{-\beta}(\Omega)}
$$

where $C=C(\beta, K)>0$ is a positive constant that depends on the parameters K and β.
Proof. By Theorem 3.1 in [17] we know that there exists a positive constant $\sigma_{0}=\sigma(K)$ such that, if $|\sigma| \leq \sigma_{0}$, for $i=1,2$ and for any $\underline{\chi}_{i} \in L^{2-\sigma}\left(\Omega ; \mathbb{R}^{2}\right)$, problem (4.1) admits a unique solution $\varphi_{i} \in W^{1,2-\sigma}$ and it results

$$
\begin{equation*}
\left\|\nabla \varphi_{1}-\nabla \varphi_{2}\right\|_{L^{2-\sigma}(\Omega)} \leq C\left\|_{1}-\underline{\chi}_{2}\right\|_{L^{2-\sigma}(\Omega)} \tag{4.2}
\end{equation*}
$$

where $C=C(K)>0$ is a positive constant that depends only on the parameter K, that is (4.2) is uniform in σ.

If $\beta>0$ is fixed, using (4.2) and Theorem 3, we find

$$
\begin{aligned}
& \left\|\nabla \varphi_{1}-\nabla \varphi_{2}\right\|_{L^{2}(\log \log \log L)^{-\beta}(\Omega)}^{2} \leq \\
& \leq C_{1}(\beta)\left\|\nabla \varphi_{1}-\nabla \varphi_{2}\right\|_{L^{2}(\log \log \log L)^{-\beta}(\Omega)}^{2}= \\
& =C_{1}(\beta) \int_{0}^{\varepsilon_{0}}(1+\log |\log \varepsilon|)^{-(\beta+1)}(\varepsilon|\log \varepsilon|)^{-1}\left\|\nabla \varphi_{1}-\nabla \varphi_{2}\right\|_{L^{2-\epsilon}(\Omega)}^{2} d \varepsilon \leq \\
& \leq C_{2}(\beta, K) \int_{0}^{\varepsilon_{0}}(1+\log |\log \varepsilon|)^{-(\beta+1)}(\varepsilon|\log \varepsilon|)^{-1}\left\|\underline{\chi}_{1}-\underline{\chi}_{2}\right\|_{L^{2-\varepsilon}(\Omega)}^{2} d \varepsilon= \\
& =C_{2}(\beta, K)\left\|\underline{\chi}_{1}-\underline{\chi}_{2}\right\| \|_{L^{2}(\log \log \log L)^{-\beta}(\Omega)}^{2} \leq \\
& \leq C_{3}(\beta, K)\left\|\underline{\chi}_{1}-\underline{\chi}_{2}\right\|_{L^{2}(\log \log \log L)^{-\beta}(\Omega)}^{2} .
\end{aligned}
$$

Now we are in position to prove the main Theorem.
Proof. Since $L^{\tilde{\Phi}}(\Omega)=L(\log L)^{\frac{1}{2}}(\log \log \log L)^{\frac{\beta}{2}}(\Omega)$ is a subspace of $L(\log L)^{\frac{1}{2}}(\Omega)$ if $\beta \geq 0$, we can ensure (as already observed) that (1.1) has a unique finite energy solution $v \in W_{0}^{1,2}(\Omega)$. From now on we will treat only the case $\beta>0$, since the case $\beta=0$ was already studied in [3].
In order to prove the Main Theorem, we want to apply the regularity result given by Theorem
4. To do this, as already showed by the papers [3], [13] and [24], we need to linearize problem (1.1).

We will use a linearization procedure introduced in [19] that preserves the ellipticity bounds. For shortness, we do not give all the details of the linearization procedure and we refer, for example, to [13, Proof of Theorem 1.1]. We know that there exists a symmetric, positive definite and measurable matrix valued function $B=B(x)$ such that, the unique finite energy
solution $v \in W_{0}^{1,2}(\Omega)$ of (1.1) with $f \in L^{\Psi}(\Omega)$ solves also the following linear problem

$$
\begin{cases}-\operatorname{div} B(x) \nabla v=f & \text { in } \Omega \tag{4.3}\\ v=0 & \text { on } \partial \Omega\end{cases}
$$

that is

$$
\int_{\Omega} B(x) \nabla v \nabla \varphi=\int_{\Omega} f \varphi, \forall \varphi \in W_{0}^{1,2}(\Omega)
$$

Now, if $\beta>0$, we fix $\underline{\chi} \in C^{1}\left(\bar{\Omega} ; \mathbb{R}^{2}\right)$ such that $\|\underline{\chi}\|_{L^{2}(\log \log \log L)^{-\beta}\left(\Omega ; \mathbb{R}^{2}\right)} \leq 1$ and we consider the unique finite energy solution φ to the linear Dirichlet problem

$$
\begin{cases}-\operatorname{div} B(x) \nabla \varphi=\operatorname{div} \underline{\chi} & \text { in } \Omega \\ \varphi=0 & \text { on } \partial \Omega\end{cases}
$$

where $B(x)$ is the matrix given by the linearization procedure, by Theorem 4 we have:

$$
\|\nabla \varphi\|_{L^{2}(\log \log \log L)^{-\beta}(\Omega)} \leq C(\beta, K)\|\underline{\chi}\|_{L^{2}(\log \log \log L)^{-\beta}(\Omega)} \leq C(\beta, K),
$$

and so, using Lemma 2, we obtain

$$
\begin{equation*}
\|\varphi\|_{L^{\Phi}(\Omega)} \leq C_{1}(\beta, K), \tag{4.4}
\end{equation*}
$$

where $\Phi(s) \cong e^{s^{2}(\log \log s)^{-\beta}}$ and $C_{1}(\beta, K)$ is another constant depending only on β and K. Thanks to the fact that v satisfies the linear problem (4.3) and that $B(x)$ is a symmetric matrix, using Lemma 1 and the Hölder inequality between the complementary spaces $L^{\Phi}(\Omega)$ and $L^{\tilde{\Phi}}(\Omega)$, by (4.4) we obtain that, for any $\underline{\chi} \in C^{1}\left(\bar{\Omega} ; \mathbb{R}^{2}\right)$ such that $\|\underline{\chi}\|_{L^{2}(\log \log \log L)^{-\beta}(\Omega)} \leq 1$, it results

$$
\begin{align*}
& \left|\int_{\Omega} \nabla v \cdot \underline{\chi}\right|=\left|\int_{\Omega} v \operatorname{div} \underline{\chi}\right|=\left|\int_{\Omega} v \operatorname{div}(B(x) \nabla \varphi)\right|=\left|\int_{\Omega} B(x) \nabla v \cdot \nabla \varphi\right|= \\
= & \left|\int_{\Omega} f \varphi\right| \leq C_{2}(\beta)\|\varphi\|_{L^{\Phi}(\Omega)}\|f\|_{L(\log L)^{\frac{1}{2}}(\log \log \log L)^{\frac{\beta}{2}}(\Omega)} \leq \tag{4.5}\\
\leq & C_{2}(\beta, K)\|f\|_{L(\log L)^{\frac{1}{2}}(\log \log \log L)^{\frac{\beta}{2}}(\Omega)},
\end{align*}
$$

where $C_{2}(\beta, K)$ is a constant that depends only on β and K.
Since $C^{1}\left(\bar{\Omega} ; \mathbb{R}^{2}\right)$ is dense in $L^{2}(\log \log \log L)^{-\beta}(\Omega)$, taking the supremum in (4.5) under the conditions $\underline{\chi} \in C^{1}\left(\bar{\Omega} ; \mathbb{R}^{2}\right),\|\underline{\chi}\|_{L^{2}(\log \log \log L)^{-\beta}\left(\Omega ; \mathbb{R}^{2}\right)} \leq 1$ and recalling that $L^{2}(\log \log \log L)^{\beta}(\Omega)$ is the associate space of $L^{2}(\log \log \log L)^{-\beta}(\Omega)$, we obtain

$$
\|\nabla v\|_{L^{2}(\log \log \log L)^{\beta}(\Omega)} \leq c(\beta, K)\|f\|_{L(\log L)^{\frac{1}{2}}(\log \log \log L)^{\frac{\beta}{2}}(\Omega)}
$$

as desired.

References

[1] R. A. Adams: Sobolev Spaces, Academic Press, New York, (1975).
[2] A. Alberico, V. Ferone, Regularity properties of solutions of elliptic equations in \mathbb{R}^{2} in limit cases, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 6 (1995), no.4, 237-250.
[3] A. Alberico, T. Alberico, C. Sbordone: Planar quasilinear elliptic equations with right-hand side in $L(\log L)^{\delta}$, Discrete Contin. Dyn. Syst. 31 (2011), no. 4, 1053-1067.
[4] C. Bennett, K. Rudnick: On Lorentz-Zygmund spaces, Dissert. Math. 175 (1980), 1-67.
[5] C. Bennett, R. Sharpley: Interpolations of operators, Pure and Applied Mathematics, 129, Academic Press, 1988.
[6] L. Boccardo, T. Gallouët, L. Orsina: Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincarè Anal. Non Linèaire 13(5), (1996) no. 5, 539-551
[7] H. Brezis, F. Merle: Uniform estimates and blow-up behavior for solutions of $\Delta u=V(x) e^{u}$ in two dimensions, Comm. Partial Differential Equations 16 (1991), no. 8-9, 1223-1253.
[8] A. Cianchi: A Sharp Embedding Theorem for Orlicz-Sobolev Spaces, Indiana Univ. Math. J., 45 (1996), 39-65.
[9] A. Cianchi: Continuity Properties of Functions from Orlicz-Sobolev Spaces and Embedding Theorems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 23 (1996), 575-608.
[10] A. Cianchi: Boundedness of solutions to variational problems under general growth conditions, Comm. Partial Differential Equations 22 (1997), no. 9-10, 1629-1646.
[11] A. Cianchi: A fully anisotropic Sobolev inequality, Pacific J. Math. 196(2000), no. 2, 283-295.
[12] L.M. De Cave, L. D' Onofrio, R. Schiattarella: Orlicz regularity of the gradient of solutions to quasilinear elliptic equations in the plane, submitted 2014.
[13] L.M. De Cave, C. Sbordone: Gradient regularity for solutions to quasilinear elliptic equations in the plane, J. Math. Anal. Appl. 417 (2014), pp. 537-551.
[14] D.E. Edmunds, P. Gurka, B. Opic: On Embeddings of Logarithmic Bessel Potential Spaces, J. Funct. Anal., 146 (1997), 116-150.
[15] D.E. Edmunds, H. Triebel: Function spaces, entropy numbers, differential operators, Cambridge University Press, Cambridge, 1996.
[16] F. Farroni, L. Greco, G. Moscariello: Stability for p-Laplace type equation in a borderline case, Nonlinear Anal. 116 (2015), 100-111.
[17] A. Fiorenza, C. Sbordone: Existence and uniqueness results for solutions of nonlinear equations with right hand side in L^{1}, Studia Math. 127 (1998), no. 3, 223-231.
[18] T. Iwaniec, C. Sbordone: On the integrability of the Jacobian under minimal hypotheses, Arch. Rat. Mech. Anal., 119 (1992), 129-143.
[19] T. Iwaniec and C. Sbordone, Quasiharmonic fields, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001), no. 5, 519-572.
[20] G. Mingione, The Calderon-Zygmund theory for elliptic problems with measure data, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), 195-261.
[21] G. Mingione, Gradient estimates below the duality exponent. Math. Ann. 346(3), (2010) 571-627.
[22] M. Rao, Z. D. Ren: Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 146 (1991).
[23] N. Trudinger: On imbeddings into Orlicz spaces and some applications., J. Math. Mech. 17 (1967), 473-483.
[24] G. Zecca: Regularity results for planar quasilinear equations, Rend. Mat. Appl. (7) 30 (2010), 329-343.
Linda Maria De Cave, Dipartimento S.B.A.I., Sapienza Università di Roma, Via A. Scarpa 16, 00161 Roma, Italy

E-mail address: linda.decave@sbai.uniroma1.it, lindamdecave@gmail.com
Luigi D'Onofrio, Università degli Studi di Napoli "Parthenope", Via Parisi 13, 80100 Napoli, Italy

E-mail address: donofrio@uniparthenope.it
Roberta Schiattarella, Dipartimento di Matematica e Applicazioni "R. Caccioppoli", Università degli Studi di Napoli "Federico II", Via Cintia, 80126 Napoli, Italy

E-mail address: roberta.schiattarella@unina.it

