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REGULARITY RESULTS FOR QUASILINEAR ELLIPTIC EQUATIONS
IN THE PLANE

LINDA MARIA DE CAVE, LUIGI D’ONOFRIO AND ROBERTA SCHIATTARELLA

ABSTRACT. For a planar domain €2, we study the Dirichlet problem for the quasilinear
elliptic equation
—divA(z,Vv) = f

8
when f belongs to the Zygmund space L(log L)% (logloglog L) 2 (), 8 2 0. We prove
that there exists a unique solution v € W&’Q(Q) with |Vv| € L2(logloglog L) (Q).

1. INTRODUCTION

In this paper we consider the following Dirichlet problem on a bounded open set 2 c R?
with C! boundary

Av=f in Q

1.1
(1.1) v=0 on 0,

where A is the differential operator defined by

Av = —div A(z, Vv)
Here A: Q) xR? - R? is a Charathéodory mapping, that is
A(+,€) is measurable for all £ € R?

1.2
(1-2) A(z,-) is continuous for almost every x € €.

Furthermore, we assume that A satisfies the Leray—Lions type conditions, i.e. there exists
K > 1 such that, for almost every z € Q and for any &, 7€ R?, it results

i) A, €) - A(z,n)| < K|S -1

(1.3) it) 6 -n* < K(A(z,€) - A(z,n),£ - n)
i) A(z,0) =0.
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In [17], under the assumptions (1.2) and (1.3), the Authors proved for the problem (1.1)
with f € L'(Q) an existence and uniqueness theorem of the solution in the Grand Sobolev

space WO1 ’2)((2). This is the space of functions v € WO1 1(Q) whose gradient satisfies

1

2-¢
sup [ [/ (ol da| " = Jolhwnn ey <o

0O<e<1

We emphasize that WO1 ’2)(9) is a function space slightly larger than WO1 2(Q).

The critical Zygmund class “close”to L' for f such that the solution v has finite energy,
ie. veWy?(Q), is L(log L)z (£2). This derives from the Trudinger embedding (see [23] and
Section 2 for definitions)

Wo?(Q) = expy(Q)
that implies
L(log L)*(Q) = W*(Q),
as follows by a duality relation in the usual topological sense (see [22]).
Further regularity derives from the stronger assumption f € Llog L(€2). Precisely, (see [2],

[7):

feLlogL(Q) = |Vu| e L*log L(Q).
By the embedding theorems for Orlicz-Sobolev spaces (see [8], [14]), the solution v belongs
to the double exponential space L®(2) with ®(t) = exp (exp (¢?)) —e. In [3] the Authors
covered previous results by proving, for % <§ <1, the following estimate:

IVl L2 (10g £)26-1(02) £ C (K, 8) [ f | L1og Ye () -

If f belongs to a space slightly smaller than L(log L) (£2), given by L(log L) (loglog L) 5 ()
with 0 < 8 < 2, there exists a unique solution v to the Dirichlet problem (1.1) such that
|vv| € L?(loglog L)?(Q) with the estimate

HVUHLQ(loglogL)ﬁ(Q) < C(K,ﬁ)uf”

(see [13]). It generalizes a result of [24] obtained for § = 1.

L(log L)% (loglog L) 3 ()

In this paper we prove the following

Main Theorem. Let A = A(z,€) satisfy (1.2) and (1.3) and let B > 0. Then, for f €
L(logL)%(logloglogL)g(Q) there exists a unique solution v € W01’2(Q) to the Dirichlet
problem (1.1) with |Vv| € L?(logloglog L)?(Q) and the following estimate holds

va”Lz(loglog log L)B(Q) £ C(K, ﬁ) HfHL(logL)% (logloglogL)% @)

For the proof, one of the main tool is a regularity result for elliptic equations with right
hand side in divergence form
-Ap =divy
slightly below the natural space y € L2. Following an idea of [16], we use the well known
estimate

IVl po-e(ay < c(K) x|l L2 (0) lel < €0
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to deduce
” V<)OHLr’-’(log loglog L)=A () < C(Ka 6) HXHLZ(log loglog L)=8 ()"

Similar results are proved in [12] for f € L(log L)°(logloglog L)g (Q) for § > 1 and B>26-1.
When the datum is a measure we refer the interested reader to [6], [20], [21] and the reference
therein.

2. PRELIMINARIES

In the present Section we will treat some function spaces and related associate spaces.
Let © be a bounded domain in R™, n > 2 and X () be a Banach function space endowed
with the norm |- | x (o). The Banach function space (X(£2))" whose norm is given by

lgllx (o)) = Sup{‘/g; fgdx

is called the associate space of X (2).

sit. £ e X (). |fxe 1)

A function u belongs to the Lebesgue space LP(€)) with 1 < p < oo if, and only if,

1
lwl e o) = (]{2 |u|pdx) < +00
where f, = i Jo-

Now we recall some useful function spaces slightly larger than classical Lebesgue spaces.

2.1. Grand Lebesgue spaces. For 1 < p < oo, let us consider the class, denoted by L) (Q),
consisting of all measurable functions u € M1<4<, L9(€2) such that

_1
sup {5][ |u(x)|p_5}p < 400
O<e<p-1 Q

which was introduced in [18]. LP)(Q) becomes a Banach space, the Grand Lebesgue space
LP) (), equipped with the norm

1
1 p—€
u = sup er u(x p’e} .
el = s < { £, (o)

Moreover, |u] s q) is equivalent to

1
sup {6][ |u(az)|p_8}p .
O<e<p-1 Q

In general, if 0 < o < oo, we can define the space L*P)(Q) as the space of all measurable
functions u € Ny<4<p L7(€2) such that

a
lul Loy = sup {e7 |ufp-c} < +oo.
O<e<p-1
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2.2. Orlicz spaces. Let Q be an open set in R”, with n > 2. A function ® : [0, +c0) —
[0,+00) will be called a Young function if it is convex, left-continuous and vanishes at 0;
thus any Young function ® admits the representation

d(t) = fotqb(s) ds fort>0

where ¢ : [0,+00) — [0,+00) is a non decreasing, left— continuous function, which is neither
identically equal to 0 nor to co. The Orlicz space associated to ®, named L® (), consists
of all Lebesgue measurable functions f : ) - R such that

fﬂ@(m) <oo  for some A= A(f) > 0.

L®(Q) is a Banach space equipped with the Luxemburg norm

HfHL@(Q)=inf{§:/§2¢()\|f|)£1}.

Examples of Orlicz spaces:

1) If ®(t) =t for 1 < p < oo then L®(Q) is the classical Lebesgue space LP ().

2) If ®(t) = t? (log(a +1))? with either p > 1 and ¢ €e R or p = 1 and ¢ > 0, where
a > e is a suitable large constant, then L®(Q) is the Zygmund space denoted by
L?(log L)1(Q).

3) If ®(t) =t (loglog(a +t))? with either p > 1 and ¢ € R or p = 1 and ¢ > 0, where
a > e then L?(1) is the space LP(loglog L)?(12).

4) If ®(t) = t* (logloglog(a +t))? with either p>1 and g€ R or p =1 and ¢ > 0 where
a>e, then L*(Q) is the space LP(logloglog L)?(Q).

5) If ®(t) = ! =1 and a > 0, then L®(Q) is the space of a-exponentially integrable
functions EXP, (). We denote by exp,(§2) the closure of L=(2) in EXP,(Q).

We have the following relations between Grand Lebesgue and Orlicz spaces:

(@) c 2 (@) (@ A
( )ClogL( ) c ( )C(le( )-
The Young complementary function is given by
- t
(2.1) O(t) =sup{st-P(s):s>0} = f ¢ (s)ds
0

where
¢~ (s) =sup{r: o(r) < s}.
Moreover, the following Holder’s type inequality holds

| [ H@)g(a)ds

for fe LT(Q) and g € L‘i’(Q).

<2 Hf||L<I>(Q) HQHL@(Q)

Given two Young functions ® and ¥, we will say that ¥ dominates ® globally (respectively
near infinity), if there exists a constant k > 0 such that

O(t) < U(kt) for allt >0 (respectively for all ¢ >ty for some ¢ > 0);

moreover ® and U are equivalent globally (respectively near infinity, ® = ¥ ) if each dom-
inates the other globally (respectively near infinity). If ® and ¥ are the complementary
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Young functions of, respectively, ® and ¥, then ¥ dominates ® globally (or near infinity) if
and only if ® dominates ¥ globally (or near infinity). Similarly, ® and ¥ are equivalent if
and only if ® and ¥ are equivalent. We have the following result.

Theorem 1. The continuous embedding LY(Q) — L®(Q) holds if and only if either ¥
dominates ® globally or ¥ dominates ® near infinity and Q0 has finite measure.

Here below we recall the explicit expression of the associate of some Orlicz spaces (see
(4], [14], [15]).
Theorem 2. Let Q c R™ an open set. If 1 <p<oo, geR, then
o (L7(log L)"())' = L¥ (log L) #1 (%)

o (LP(loglog L)1(2))" = L” (loglog L) 77 (2)

o (L*(logloglog L)?(9)) = L¥ (logloglog L) ™71 ()

where p' is the conjugate exponent of p, i.e. *++ L =1.

PP

If p=1 and ¢ >0 then

e (L(logL)?(R)) = EXP1(Q).
q

Finally we recall the definition of the Orlicz-Sobolev spaces WY () and Wol‘p(Q) (see
[1], [8], [9], [22]). The space W1 ¥(Q) consists of the equivalence classes of functions u in
LY(Q) such that the length of the distributional gradient |Vu| belongs to LY(£2). It is a
Banach space with respect to the norm given by

lullwrw () = lulre @) + IVulLv(q)-

As in the case of the ordinary Sobolev space, VVO1 () coincides with the closure of C5° ()
in WHY(Q).

2.3. Orlicz-Sobolev embeddings. For the embedding Theorem in the setting of Orlicz
Sobolev space, we need the following:

2

Lemma 1. Let @(t) = exp{m

}—1 with B € R. Then

~ B
$(t) =t (logt)? (logloglogt)® .

Proof. As ® is a Young function, by definition we have

o(t) = /Ot¢(s)ds

o ze 2 }[ 2 s
o (loglogs)ﬂ (loglogs)ﬁ (logs)‘(loglogs)m1 .

where

For large s we have

52 2s
#s) 2 exp { (loglog s)B } . (loglog 3)5
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and there exists a suitable constant ¢ > 1 such that

p{ s? } <o p{ 52 } 25
Xp{ ——— p <ex .
(loglogs)ﬁ (loglogs)ﬁ (loglogs)ﬁ

e
SeXpy——————5 .
(loglog(es))
Then it is not difficult to check that near infinity it results

»1(r) = (log r)% (loglog logr)g .
By (2.1), we obtain that

- v 1 B
‘P(y)=f0 ¢~ (r)dr = y(logy)? (logloglogy)? .

Given a Young function ¥ such that

fo(@:ﬂ)dmom

(2.2) ®(s)=VoHy'(s) for s >0,

we define @ : [0, +00) — [0, +00) as

where H;'(s) is the (generalized) left continuous inverse of the function Hj : [0,+00) —
[0, +00) given by

(2.3) Hg(r):('/(;r (\117(515)) dt)2 for r>0.

In [10] and in [11], the Author showed that ® is a Young function and that the following
form of Sobolev embedding theorem holds

lullLe @) < ClVulLe )

for every function u in the Orlicz-Sobolev space WO1 ‘I’(Q) As an application, we have the
following result.

Lemma 2. Let Q c R? be an open bounded set with C' boundary. If we consider Young
functions (1)

U(t) = t* (logloglog t)_ﬁ
with B € R, then
WhY(Q) > L*(9)
where
B(s) = esz(bglogs)*ﬂ .
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Proof. By (2.3) we have that

r B\2
Hy(r) = (fo (logloglogt)dt) = (logr)% (logloglogr)

wlw

t

Moreover, as showed in the proof of Lemma 1, the inverse function H;'(s) is equivalent
near infinity to
652(10g10gs)75

By (2.2), we obtain that
D(s) 25" (loglog )™ (loglogs)™ = ¢’ (loglogs)™”

and we conclude that
wh¥(Q) - L*(Q).

3. EQUIVALENT NORM ON THE ZYGMUND SPACES L?(logloglog L)?(Q)

We shall introduce an equivalent norm on L4(logloglog L)™#(Q) with 8 > 0, which in-
volves the norms in L97¢(Q), for 1 < ¢ < o0 and 0 < & < ¢ — 1. This is based on a method
recently suggested by L. Greco et al. (see [16]). If f is a measurable function on 2, we set

B M aostostos 2 ={ f, (elloge)™ (1+log togel) "5 . de}”
0
Here ¢¢ €]0,q — 1] is fixed.
Theorem 3. We have f € L9 (logloglog L)_B () if and only if
1l 2 roglog1og 1)~ (22) < +00-

Moreover, ||| - [||aqoglogiog £)-# (@) 5 @ norm equivalent to the Luzemburg one, that is, there
exist constants C; = Ci(q, B,€0), i = 1,2 such that for all f € L9 (logloglog L)_ﬂ (Q) it results

(32) CleHLq(logloglog L)P(Q) < |||f|||L‘1(logloglogL)_B(Q) < C’2||f||L‘1(logloglogL)_B(Q)'
Now we recall the following standard inequalities (see [16], [13]).

Lemma 3. Ifb>e, 8>0, we have

g c
(logb)™” %Oe‘s“ < f " P15 de < (logb)™* F(BB”)
0

where T is the Euler Gamma function.
As a consequence of the previous Lemma, the following results hold.

Corollary 1. Let 0<d < é, B >0. Then we have

1 o 5 |log o|7# o 5 €0
L g (g
G b o e )
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Corollary 2. Let a > e®, M, >0, then there exist constants C; = C;(8,€0), i = 3,4 such
that

(loglog(a + M)) ™" [OEU llog o|~#* Vo (a + M) do
s (B+1)
5

5F(5 1)

<Cy (loglog(a,+M)) ——T(B+1).

We shall need the following Lemma.
Lemma 4. Let a > e, §>0. Then there exist constants C; = C;(B,e0), i = 5,6 such that

23 Cs (logloglog(a + M))fﬁ < foso (1 +log|log U|)_(B+1)(O'| log J|)_1(a + M) %do
& <Cs (logloglog(a + M)) ™"

for every measurable function f : Q — R.

Proof. We start by proving the following

(3.4) foso (1+1log|log J|)_('B+1)(U| loga]) ™ (a+ M) do < C (logloglog(a + M))fﬁ .

Since o < %, we can apply Lemma 3 with the choice b = |logc®| and so, applying also

Corollary 2, we obtain

€o 7(64’1) - - -0
'/0 (1+log|loga|) o Nlogo| ™ (a+ M) 7do <
1)eco € €
(ﬂ+ e f " eh (f O(2*€|10gcf|*(“1)a*1(a+M)*"da) de <
0 0

(B+1)

1)e®o feo nr 1 e
< 04% f 5ﬁw (loglog(a + M))° de

Since e + 1 <gp+ 1 and lim.,oT'(e + 1) = 1, we have

€ —
/ ’ (1 +log|logal) (5+1)0’1| logo| ™ (a+ M) 7do <
0

+1)e*o e 45 e
SC(E())%A P71 (loglog(a + M)) ™ de
o

Applying the first inequality of Corollary 1 with the choice ¢ = (log log(a + M ))_1, we obtain
(3.4).

To prove the first inequality in (3.3), we apply Lemma 3 with the choice b = loglog(a + M)
and the first inequality of Corollary 2, obtaining

[t
(logloglog(a + M)) 565 f ? gl (loglog(a + M))™© de <
g Y0

o 1 € e
< ﬁeﬁ = f ' T (e +1) ([ ’ llog o| Vo (a + M)_"da) de <
g, CsJo 0

€0 &€ €
< C(EO)BGB [ ’ |loga|_1a_1(a+M)_‘7(f 0<€'6|loga|_‘€d£) do
gy YO 0
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Applying again Lemma 3 with the choice b = |log c¢|, we find
(logloglog(a + M))_ﬂ <

2e0 €
< C(Eo)w f ’ (1+1og]| loga|)7(ﬁ+1) llogo| o™ (a+ M) 7do
g(B+1) Jo

Now we are in position to prove Theorem 3.
Proof of Theorem 3. 1t is easy to check that |[[f[l|La(iog10g10g 1) (0)- defined by (3.1), is a

norm on L4(logloglog L)™#(Q).
Moreover, for any measurable function f and for a.e. z €, if a > ¢ we have

A7+ £ <IA77 <27 [a® + [ £ (a+ [F)7] -
Integrating over €2 we get
Sy = < 122 <2 a0+ 27 f 170G e | fl) <
This implies
(1 +1og [log e]) D (eltoge) | £ 1£19¢a + |f])Cda | de <
0 g|1log g o S
€0 _ _ _
< [+ logllogel) ) (cl1ogel) 14 2
&
<2771 / ’ (1+ 10g|10g£|)7(6+1) (¢|logel) " de+
0
e ~(B+1) -1 a —
+2 (1+log|loge|) (elloge)™ | 7 [f*(a+[f))~dx|de
0
Applying Lemma 4 with M = |f| we have
Cs £ 111" (logloglog(a+ /1)) " da <
= -(B+1) -1 -
< fure [ (e rogtoge) O (cftogel)  a+ 11 de | -
= [ (1 +10g10ge)) O (clrogel) | £ 1717 “<dz|d
= J, (1+log|logel) (elloge)™| 7 IfI*(a+[f))~dx|de <
€0 _ _ e
< [ (1+1og|logel) OV (el togel) /< de
&€
<2971g4 f ’ (1+ 10g|10g5|)_(5+1) (e|loge|) tde+
0

+2q-1f0 " (1 +log [log e[)"#*) (5|10g5|)_1[]€l|f|q(a+|f|)_5dx]de

1+logll -# _
¢ gi-1q0 (L 108] ;g*”') #2110 £ 1717 (logloglog(a-+ 1) d
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Then we get
Cs £ 1117 (togloglog(a-+[/1)) ™ da <
(3.5) < [ (1 +10g[logel) ™ (ellogel) 14 zde <
<Cr+Cy ]g |f]? (logloglog(a + |f|))76 dx
Let f:€Q — R be a measurable function, such that [||f{l[1.(og10g10g £)-# () 1S finite. Since
1£11G=2 < IF1lG-- + 1,
by the first inequality in (3.5) we get that f e L?(logloglog L)fﬁ (2) and, moreover, if
|||f|||Lq(1og1oglogL)*ﬁ(n) = 1, it results

]2 If1 (logloglog(a + |f])) ™" dz < Cy,
where Cy is a constant independent on f. By homogeneity, for any measurable f, we get
11 £a qtog 10g 10g £) -2 (2) < Colllflll La tog 1og 10g 1) 2 (22) -
On the other hand, if f € L9 (logloglog L) " (), i.e. if 111 (log og 1og 1)~ () 18 finite, there
exists a constant Cyg such that
(3.6) 1 1lza-< ) < Cr08™ 7 1f 1| Lo rog log 1oz L) ()
as the following embeddings hold:
L% (logloglog L) 7 (Q) ¢ L% (loglog L)) () € L% (log L) " (2) ¢ LV ()
for any d,v,«, 8> 0. By (3.6) we get
(37) 118 < Ol IEE 1 o togton sy 2oy

hence, by (3.5) we obtain that ||| flll L« (1og10g 108 £.)-# () < +°° and if [|f]l L4 (1oglog10g £)-# (2) = L+
integrating (3.7) and using (3.5), we deduce that

|||f|||L‘1(logloglogL)_E(Q) <Cha,

where the constant C75 is independent on f. By homogeneity we conclude the proof, ob-
taining

1 Latoglogtog )2 (2) < Cr2llfl Latogloglog 1) () -

4. PROOF OF MAIN THEOREM

In this Section we will prove Main Theorem stated in the Introduction. As already hinted,
we will use a regularity result for elliptic equations with right hand side in divergence form
that we will apply to a linear problem. Actually we will give a stability estimate for equations
of Leray—Lions type whose interest is independent from our context. FExactly, using the
equivalence given by Theorem 3 and a well known result contained in [17], we deduce the
following.
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Theorem 4. Let A= A(x,£) be a Leray—Lions mapping that satisfies (1.3). Then, if 8> 0,
fori=1,2 and for any X, € L?(logloglog L) A (Q;R?), there exists a unique solution @; to
the Dirichlet problem

(4.1) {divA(x, Vi) =divy, inQ

pi e Wy ().
Moreover it results
HVle - V(»02HLz(logloglogL)*ﬂ(Q) < Cﬂxl _X2|‘L2(logloglogL)*3(Q)
where C = C(8,K) >0 is a positive constant that depends on the parameters K and (3.
Proof. By Theorem 3.1 in [17] we know that there exists a positive constant og = o(K’) such

that, if |o] < g9, for 4 = 1,2 and for any X, € L?77(2;R?), problem (4.1) admits a unique

solution ¢; € W1279 and it results
(4.2) Vo1 = V| r2-o () < Clix, = X, l22-2(0) »

where C' = C(K) > 0 is a positive constant that depends only on the parameter K, that is
(4.2) is uniform in o.
If 8> 0 is fixed, using (4.2) and Theorem 3, we find

2
Vo1 = V212 (ogl0g10g 1)-2 (0)

<CL(BIIVer = VealllZ2toglog 08 £)-5 () =
€0
=C1(B) fo (1+log|logel) D (elloge]) ! [Veor - Vipa| Fa-e (qyde <

o ~(B+1) -1 2
<Co(8,K) [ (1 +og|logel) P (el 10gel) y, - X, - ey de =

:C2(Ba K)|||K1 - K2|||%2(logloglogL)*B(Q) <
<Cs (ﬁ7 K) HK1 - XQ H%Q(log loglog L)=A () *

Now we are in position to prove the main Theorem.

Proof. Since L‘B(Q) = L(log L)z (log log log L)g (Q) is a subspace of L(log L)2 (Q) if 8 > 0, we
can ensure (as already observed) that (1.1) has a unique finite energy solution v € W (2).
From now on we will treat only the case § > 0, since the case 8 = 0 was already studied in
(3].

In order to prove the Main Theorem, we want to apply the regularity result given by Theorem
4. To do this, as already showed by the papers [3], [13] and [24], we need to linearize problem
(1.1).

We will use a linearization procedure introduced in [19] that preserves the ellipticity bounds.
For shortness, we do not give all the details of the linearization procedure and we refer, for
example, to [13, Proof of Theorem 1.1]. We know that there exists a symmetric, positive
definite and measurable matrix valued function B = B(x) such that, the unique finite energy
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solution v € WO1 2(Q) of (1.1) with f e LY () solves also the following linear problem

(4.3) -divB(z)Vv=f inQ
v=0 on 092,

that is
[ B@vove= [ fo. voewi?().
Now, if 8> 0, we fix x € C'(Q;R?) such that | x| r2(10g10g10g 1)-#(2;r2) < 1 and we consider
the unique finite energy solution ¢ to the linear Dirichlet problem
~divB(z)Vp =divy inQ
=0 on 0N} .

where B(z) is the matrix given by the linearization procedure, by Theorem 4 we have:

Hv@“L%logloglogL)*ﬁ(Q) < C(ﬁ7 K)HKHLQ(logloglogL)*ﬁ(Q) < C(ﬂ7K) )

and so, using Lemma 2, we obtain
(4.4) lellLe @y < C1(B,K),

where ®(s) = s loglog )™ 4nq ¢y (8, K) is another constant depending only on 5 and K.
Thanks to the fact that v satisfies the linear problem (4.3) and that B(z) is a sym-
metric matrix, using Lemma 1 and the Holder inequality between the complementary

spaces L®(€2) and L®(Q), by (4.4) we obtain that, for any x € C'(Q;R?) such that

HX“L?(loglogmgL)—ﬁ(Q) <1, it results

o=l [ va =fd-3 ‘z‘fB . ’=
fQVv K‘ ’[Qv 1VX‘ ‘ Y iv(B(x)Ve) o (z)Vv-Vep

@5) | [ el < oDl ol

<C: ,K 1 )

2(ﬁ )Hf”L(logL)§(logloglogL)g(Q)

where Cy(8, K) is a constant that depends only on 8 and K.
Since C1(Q;R?) is dense in L?(logloglog L)~?(£2), taking the supremum in (4.5) under the
conditions y € C*(Q;R?), IX[l 22 (log 1og 10g £)-# (2;r2) < 1 and recalling that L?(logloglog L)?(Q)

1 B <
L(log L)2 (logloglog L) 2 (2)

is the associate space of L?(logloglog L) (), we obtain
IVV] 12 (10g 10g 10g )2 () < €(Bs K)”fHLaogL)%(1og1og1ogL>§(Q)

as desired. O
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