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ON THE ASYMPTOTIC BEHAVIOR OF THE FIRST EIGENVALUE OF

ROBIN PROBLEM WITH LARGE PARAMETER

ALEXEY FILINOVSKIY

Abstract. We consider the eigenvalue problem ∆u+λu = 0 in Ω with Robin condition
∂u
∂ν

+ αu = 0 on ∂Ω where Ω ⊂ Rn, n ≥ 2, is a bounded domain with a smooth

boundary, ν is the outward unit normal, α is a real parameter. We obtain two terms of
the asymptotic expansion of the first eigenvalue of this problem when α→ +∞. We also

obtain an estimate for strong solutions of the non-homogeneous Robin problem for large

positive values of the parameter.

1. Introduction

Let us consider the eigenvalue problem

∆u+ λu = 0 in Ω,(1.1)

∂u

∂ν
+ αu = 0 on Γ,(1.2)

where Ω ⊂ Rn, n ≥ 2, is a bounded domain with boundary Γ = ∂Ω ∈ C3. Here ν is the
outward unit normal vector to Γ, α is a real parameter. The problem (1.1), (1.2) is usually
called a Robin problem ([6], Ch. 7, Par. 7.2).

There is a sequence of eigenvalues λ1(α) < λ2(α) ≤ . . . of the problem (1.1) – (1.2)
enumerated according to their multiplicities such that lim

k→∞
λk(α) = +∞. Note that λ1(α)

is simple with a positive eigenfunction. Let 0 < λD1 < λD2 ≤ . . . , lim
k→∞

λDk = +∞ be the

sequence of eigenvalues of the Dirichlet eigenvalue problem

∆u+ λu = 0 in Ω,(1.3)

u = 0 on Γ.(1.4)

By variational principle ([8], Ch. 4, Par. 1, no. 4) we have

λ1(α) = inf
v∈H1(Ω)

∫
Ω
|∇v|2dx+ α

∫
Γ
v2ds∫

Ω
v2dx

,(1.5)

λD1 = inf
v∈

o
H1(Ω)

∫
Ω
|∇v|2dx∫
Ω
v2dx

.(1.6)
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We are interested in the behavior of λ1(α) when α→ +∞. In [10], for n = 2, the following
two-side estimate was obtained:

λD1

(
1 +

λD1
αq1

)−1

≤ λ1(α) ≤ λD1
(

1 +
4π

α|Γ|

)−1

, α > 0,

where q1 is the first eigenvalue of the Steklov problem

∆2u = 0 in Ω,

u = 0, ∆u− q ∂u
∂ν

= 0 on Γ.

One can prove that λk(α) ≤ λDk , k = 1, 2, . . . , which gives an upper bound of λk(α) for
all values of α. The behavior of higher order eigenvalues of the problem (1.1), (1.2) for large
positive α is considered in [1] for n = 2 and a smooth boundary Γ. It was noticed in ([1],
Ch. 6, Par. 2, no. 1) that lim

α→+∞
λk(α) = λDk . In [4] the following inequalities were obtained

for λk(α):

(1.7) λDk − C1

(
λDk
)2

√
α
≤ λk(α) ≤ λDk , α > α1 > 0, k = 1, 2, . . . .

The inequalities (1.7) were improved in [5]: the eigenvalues λk(α), k = 1, 2, . . . satisfy indeed
the estimates

(1.8) λDk − C1

(
λDk
)2

α
≤ λk(α) ≤ λDk , α > α1 > 0,

where the constants C1 and α1 do not depend on k.

2. Results

The main result of this paper is the following.

Main Theorem. Let n ≥ 2. Then the eigenvalue λ1(α) satisfies

(2.1) λ1(α) = λD1 −

∫
Γ

(
∂uD

1

∂ν

)2

ds∫
Ω

(
uD1
)2
dx

1

α
+ o

(
1

α

)
, when α→ +∞,

where uD1 is the first eigenfunction of the Dirichlet problem (1.3), (1.4).

Remark 1. Formula (2.1) is valid for n = 1 with an appropriate correction. For Ω = (a, b)
we have

(2.2) λ1(α) = λD1 −
([uD1 ]′(a))2 + ([uD1 ]′(b))2∫ b

a

(
uD1
)2
dx

1

α
+ o

(
1

α

)
, α→ +∞.

One can obtain the equality (2.2) also by analysis of the asymptotic behavior of the eigen-
function of a Sturm-Liouville problem with Robin condition for large positive α’s.

The expansion (2.1) was announced in [3]. Let us note, that thanks to the properties of
the function uD1 one has

(2.3)

∫
Γ

(
∂uD1
∂ν

)2

ds > 0.
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Moreover, the relations (2.1), (2.3) show that the power 1 of α in the denominator in (1.8)
cannot be replaced by 1 + δ with δ > 0.

The proof of the expansion (1.8) uses uniform (with respect to large positive values of α)
estimates of the strong solution of an elliptic boundary value problem with Robin boundary
condition.

Let h(x) ∈ L2(Ω) and u(x) ∈ H1(Ω) be a weak solution of the boundary value problem
with parameter

−∆u+ u = h in Ω,(2.4)

∂u

∂ν
+ αu = 0 on Γ, α > 0.(2.5)

In domains with C2 boundary the weak solution of the problem (2.4), (2.5) belongs to
H2(Ω) and is a strong solution ([8], Ch. 4, Par. 2, Th. 4).

Theorem 1. The solution of the problem (2.4), (2.5) satisfies

(2.6) ‖u‖H2(Ω) ≤ C2‖h‖L2(Ω), α > α1 > 0,

with the constant C2 independent of α.

Remark 2. Let us note that the estimate (2.6) for the solution of the problem (2.4), (2.5)
is known for fixed α (see, for example, [8]). But we need the estimate (2.6) to be valid with
a constant C2 for α→ +∞.

3. Estimates for the problem with parameter

For h(x) ∈ L2(Ω) a weak solution u(x) ∈ H1(Ω) of the problem (2.4), (2.5) satisfies the
integral identity

(3.1)

∫
Ω

((∇u,∇v) + uv)dx+ α

∫
Γ

uv ds =

∫
Ω

hv dx

for all v ∈ H1(Ω).
Proof of Theorem 1. At first we obtain some auxiliary estimates for the solution of the

problem (2.4), (2.5) for α > 0. Taking v = u in (3.1), we obtain

(3.2)

∫
Ω

(|∇u|2 + u2)dx+ α

∫
Γ

u2ds =

∫
Ω

hu dx.

It follows from (3.2) that

(3.3)

∫
Ω

(|∇u|2 + u2)dx+ α

∫
Γ

u2ds ≤ 1

2

∫
Ω

u2dx+
1

2

∫
Ω

h2dx.

Due to Γ ∈ C2 a weak solution of the problem (2.4), (2.5) is a strong solution in H2(Ω). So,
∂u
∂ν ∈ H

1(Ω) and we have a trace ∂u
∂ν

∣∣
Γ
∈ L2(Γ). By the boundary condition (2.5) we obtain

the equalities

u = − 1

α

∂u

∂ν
on Γ

and

(3.4) α

∫
Γ

u2ds =
1

α

∫
Γ

(
∂u

∂ν

)2

ds.
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Combining (3.3) and (3.4), we have the estimate

(3.5)

∫
Ω

(|∇u|2 + u2)dx+ α

∫
Γ

u2ds+
1

α

∫
Γ

(
∂u

∂ν

)2

ds ≤
∫

Ω

h2dx.

Now we suppose that u(x) ∈ C2(Ω) and that u satisfies the boundary condition (2.5).
Since Γ ∈ C2 we consider u as extended to Rn \ Ω such that u ∈ C2(Rn). A direct
computation gives

(3.6) (∆u)2 = |∇2u|2 + div
(

∆u∇u− 1

2
∇
(
|∇u|2

))
,

where

|∇2u|2 =

n∑
i,j=1

u2
xixj

.

Integrating the relation (3.6) on Ω and applying the Gauss-Ostrogradskiy formula, we have

(3.7)

∫
Ω

(∆u)2dx =

∫
Ω

|∇2u|2dx+

∫
Γ

(
∆u

∂u

∂ν
− 1

2

∂

∂ν

(
|∇u|2

))
ds.

To estimate the surface integral in (3.7) consider a local orthogonal coordinate system
(y1, . . . , yn) = (y1(x), . . . , yn(x)) around an arbitrary point x ∈ Γ such that n-th axis direc-
tion coincides with the outer normal vector ν to Γ with origin in x. The first n−1 coordinate
axes lie in the tangential hyperplane to Γ. Now, for any x ∈ Γ there exists a neighborhood
Bε(0) such that the surface Γ ∩ Bε(0) is determined by the equation yn = ω(y′) ∈ C2(D),
y′ = (y1, . . . , yn−1) ∈ D ⊂ Rn−1. Note that

(3.8) ωyi(0) = 0, i = 1, . . . , n− 1.

In this local coordinates system we have∫
Γ

(
∆u

∂u

∂ν
− 1

2

∂

∂ν

(
|∇u|2

))
ds =

∫
Γ

n∑
j=1

(
uyjyjuyn − uyjuyjyn

)
ds

=

∫
Γ

n−1∑
j=1

(
uyjyjuyn − uyjuyjyn

)
ds

=

∫
Γ

n−1∑
j=1

(
uyjyjuyn − uyjuynyj

)
ds = I1(α) + I2(α),(3.9)

(3.10) I1(α) = −
∫

Γ

n−1∑
j=1

uyjuynyj ds = −1

2

∫
Γ

∂

∂ν
|∇τu|2ds,

(3.11) I2(α) =

∫
Γ

n−1∑
j=1

uyjyjuyn ds =

∫
Γ

∆τuuνds,

where the vector

(3.12) ∇τu = ∇u− ∂u

∂ν
ν
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is a tangential gradient of the function u on Γ and

(3.13) ∆τu =

n−1∑
j=1

uyjyj

is the Laplace operator in the (n − 1)-dimensional tangential hyperplane. Due to (3.10) –
(3.13) the values of I1(α) and I2(α) do not depend on the position of the y1, . . . , yn−1 axes
in the tangential hyperplane.

At first we consider the integral I1(α). The normal vector to Γ in Γ ∩Bε(0) is

ν =
1

(1 + |∇ω|2)1/2

(
−ωy1 , . . . ,−ωyn−1

, 1
)
.

The boundary condition (2.5) in the local coordinates system is

uyn(y′, ω(y′))−
n−1∑
j=1

uyj (y′, ω(y′))ωyj (y′)

+ α(1 + |∇ω|2)1/2u(y′, ω(y′)) = 0, y′ ∈ D.(3.14)

Differentiating the equality (3.14) on yi, i = 1, . . . , n− 1 we obtain

uynyi + uynynωyi −
n−1∑
j=1

((
uyjyi + uyjynωyi

)
ωyj + uyjωyjyi

)
+ α

(n−1∑
j=1

ωyjωyjyiu

(1 + |∇ω|2)1/2
+ (1 + |∇ω|2)1/2 (uyi + uynωyi)

)
= 0.(3.15)

Consider the relation (3.15) at y′ = 0. We have by (3.8) the following equality

uynyi −
n−1∑
j=1

uyjωyjyi + αuyi = 0 on Γ.

Consequently,

uynyi =

n−1∑
j=1

uyjωyjyi − αuyi = 0 on Γ(3.16)

and

I1(α) =

∫
Γ

n−1∑
i=1

uyi

(
αuyi −

n−1∑
j=1

uyjωyjyi

)
ds

= α

∫
Γ

|∇τu|2ds−
∫

Γ

n−1∑
i,j=1

ωyiyjuyiuyj ds.(3.17)

Since Γ ∈ C2 we have

sup
x∈Γ
|ωyiyj | ≤ K
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and

(3.18)
∣∣∣∫

Γ

n−1∑
i,j=1

ωyiyjuyiuyj ds
∣∣∣ ≤ (n− 1)K

∫
Γ

|∇τu|2ds.

Combining (3.17), (3.18), we obtain the inequality

(3.19) I1(α) ≥ (α− (n− 1)K)

∫
Γ

|∇τu|2ds.

Now, consider the integral I2(α). By the relation uyjyju = −u2
yj +

(
uuyj

)
yj

we have

(3.20) I2(α) = α

∫
Γ

|∇τu|2ds− α
∫

Γ

n−1∑
j=1

(
uuyj

)
yj
ds.

To estimate the second integral in (3.20) we need some results about differentiable functions
on closed surfaces ([9], see also [7], Ch. 1, Par. 7).

Let Γ ∈ C2 be a closed surface in Rn and Θ be the tangential hyperplane to Γ at the
point x. Let p(x) ∈ C1(Γ) be a vector function such that for all x ∈ Γ we have p(x) ∈ Θ.
For any x ∈ Γ and x′ ∈ Γ ∩ Bε(x) we consider the projection x̃′ of the point x on Θ and
the projection p̃(x′) of the vector function p(x) on Θ. Denote by div Θp(x) the value of the
divergence of the function p̃(x′) in the (n − 1)-dimensional space Θ at the point x′ = x.
Then

(3.21)

∫
Γ

div Θp(x) ds = 0.

Now we set p = u∇τu. Consequently, in the local coordinate system (y′, yn)|x we have

p = u
(
uy1−

ωy1
1 + |∇ω|2

(n−1∑
j=1

ωyjuyj − uyn
)
, . . . , uyn−1 −

ωyn−1

1 + |∇ω|2
(n−1∑
j=1

ωyjuyj − uyn
)
,

uyn +
1

1 + |∇ω|2
(n−1∑
j=1

ωyjuyj − uyn
))
, y′ ∈ D,

and

p̃ =
(
uuy1 −

ωy1u

1 + |∇ω|2
(n−1∑
j=1

ωyjuyj − uyn
)
, . . . , uuyn−1

−
ωyn−1

u

1 + |∇ω|2
(n−1∑
j=1

ωyjuyj − uyn
)
, 0
)
.

So,

n−1∑
i=1

(
uuyi−

ωyiu

1 + |∇ω|2
(n−1∑
j=1

ωyjuyj − uyn
))

yi

=

n−1∑
i=1

(
uuyi

)
yi
− u

1 + |∇ω|2
n−1∑
i=1

ωyiyi

(n−1∑
j=1

ωyjuyj − uyn
)

−
n−1∑
i=1

ωyi

( u

1 + |∇ω|2
(n−1∑
j=1

ωyjuyj − uyn
))

yi
(3.22)
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and by (3.8) we obtain

div Θp(x) =

n−1∑
i=1

(
uuyi

)
yi

+ uuyn

n−1∑
j=1

ωyjyj

=

n−1∑
i=1

(
uuyi

)
yi

+ (n− 1)H(x)uuyn .

where H(x) is the mean curvature of the surface Γ oriented by the outer normal ν at the
point x. Therefore,

n−1∑
i=1

(
uuyi

)
yi

=div Θp(x)− (n− 1)H(x)uuyn

=div Θp(x)− (n− 1)H(x)u
∂u

∂ν
.(3.23)

Combining the equalities (3.20), (3.21) and (3.23), we have

I2(α) =α

∫
Γ

|∇τu|2ds− α
∫

Γ

(
div Θp(x)− (n− 1)H(x)u

∂u

∂ν

)
ds

=α

∫
Γ

|∇τu|2ds+ α(n− 1)

∫
Γ

H(x)u
∂u

∂ν
ds

=α

∫
Γ

|∇τu|2ds− (n− 1)

∫
Γ

H(x)
(∂u
∂ν

)2

ds.(3.24)

Now, by∫
Ω

(∆u)2dx =

∫
Ω

|∇2u|2dx+ I1(α) + I2(α)

≥
∫

Ω

|∇2u|2dx+ (2α− (n− 1)K)

∫
Γ

|∇τu|2ds− (n− 1)

∫
Γ

H(x)
(∂u
∂ν

)2

ds

for α > (n− 1)K/2 we obtain the inequality

(3.25)

∫
Ω

|∇2u|2dx ≤
∫

Ω

(∆u)2dx+ (n− 1)

∫
Γ

H(x)
(∂u
∂ν

)2

ds.

Let us note that for convex domains Ω we have H(x) ≤ 0 and the inequality (3.25) provides
the estimate ∫

Ω

|∇2u|2dx ≤
∫

Ω

(∆u)2dx.

In general case, it follows from (3.25) that

(3.26)

∫
Ω

|∇2u|2dx ≤
∫

Ω

(∆u)2dx+ (n− 1)H1

∫
Γ

(∂u
∂ν

)2

ds,

where H1 = sup
x∈Γ
|H(x)| > 0. Using the inequality

(3.27)

∣∣∣∣∂u∂ν
∣∣∣∣ ≤ |∇u| on Γ,
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we obtain ∫
Ω

|∇2u|2dx ≤
∫

Ω

(∆u)2dx+ (n− 1)H1

∫
Γ

|∇u|2 ds.

Now we apply the inequality in [8], Ch. 3, Par. 5, Formula 19,

(3.28) ‖v‖2L2(Γ) ≤ ε‖∇v‖
2
L2(Ω) +

C3

ε
‖v‖2L2(Ω),

valid for v(x) ∈ H1(Ω) with an arbitrary ε > 0. Hence,

(3.29) ‖∇u‖2L2(Γ) ≤ ε‖∇
2u‖2L2(Ω) +

C3

ε
‖∇u‖2L2(Ω)

and

(3.30)

∫
Ω

|∇2u|2dx ≤
∫

Ω

(∆u)2dx+ (n− 1)H1

(
ε

∫
Ω

|∇2u|2dx+
C3

ε

∫
Ω

|∇u|2dx
)
.

Taking ε = 1 /(2(n− 1)H1) , in (3.30) we obtain

(3.31)
1

2

∫
Ω

|∇2u|2dx ≤
∫

Ω

(∆u)2dx+ C4

∫
Ω

|∇u|2dx, α ≥ α1 > 0.

It follows from (2.4) and Green’s formula that∫
Ω

h2dx =

∫
Ω

(−∆u+ u)2dx

=

∫
Ω

((∆u)2 + u2 − 2u∆u)dx

=

∫
Ω

((∆u)2 + 2|∇u|2 + u2)dx− 2

∫
Γ

u
∂u

∂ν
ds.

Therefore,

(3.32)

∫
Ω

((∆u)2 + 2|∇u|2 + u2)dx ≤
∫

Ω

h2dx+ 2
(∫

Γ

u2ds
)1/2(∫

Γ

(∂u
∂ν

)2

ds
)1/2

.

By the inequality (3.5) ∫
Γ

u2ds ≤ 1

α

∫
Ω

h2dx,(3.33) ∫
Γ

(∂u
∂ν

)2

ds ≤ α
∫

Ω

h2dx.(3.34)

Now, combining the inequalities (3.32) – (3.34), we have

(3.35)

∫
Ω

((∆u)2 + |∇u|2 + u2)dx ≤ 3

∫
Ω

h2dx, α > 0,

and, finally, it follows from (3.31) and (3.35) that

(3.36)

∫
Ω

(
|∇2u|2 + |∇u|2 + u2

)
dx ≤ C2

∫
Ω

h2dx, α ≥ α1, C2 = 3(1 + C4).

We prove now the estimate (2.6) for all functions u ∈ C2(Ω) satisfying the boundary con-
dition (2.5). To prove the estimate (2.6) for solutions of (2.4), (2.5) in H2(Ω) we take a
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sequence of functions um ∈ C2(Ω) satisfying (2.5) such that ‖u − um‖H2(Ω) → 0, m → ∞.
Applying the estimate (2.6) to the functions um we have

(3.37) ‖um‖H2(Ω) ≤ C2‖hm‖L2(Ω), α ≥ α1,

where hm = −∆um + um. Therefore, ‖hm‖L2(Ω) → ‖h‖L2(Ω), m → ∞. Taking a limit in

(3.37), we obtain the inequality (2.6) for all functions u ∈ H2(Ω) satisfying (2.5).
Theorem 1 is proved.

4. L2-convergence of eigenfunction

Let uα ∈ H1(Ω) be the first eigenfunction of the problem (1.1), (1.2) such that uα ≥ 0 in
Ω and ‖uα‖L2(Ω) = 1. This eigenfunction satisfies the integral identity

(4.1)

∫
Ω

(∇uα,∇v) dx+ α

∫
Γ

uαv ds = λ1(α)

∫
Ω

uαv dx

for all v ∈ H1(Ω). Therefore, taking v = uα in (4.1), we obtain:

(4.2)

∫
Ω

|∇uα|2dx+ α

∫
Γ

u2
αdx = λ1(α) ≤ λD1 .

and

(4.3) ‖uα‖2H1(Ω) + α

∫
Γ

u2
αds ≤ λD1 + 1.

Consider a sequence αk → +∞, k →∞. By (4.3) the sequence uαk
is bounded in H1(Ω)

and

(4.4) ‖uαk
‖H1(Ω) ≤

√
λD1 + 1.

Take a subsequence (denoted also by {uαk
}) such that

(4.5) uαk
→ ũ weakly in H1(Ω), strongly in L2(Ω) and L2(Γ).

Let v ∈
o

H1(Ω), then by (4.1) we have

(4.6)

∫
Ω

(∇uαk
,∇v) dx = λ1(αk)

∫
Ω

uαk
v dx.

Note that by (1.8)

(4.7) lim
α→+∞

λ1(α) = λD1 .

Now, it follows from (4.5), (4.6) and (4.7) that

(4.8)

∫
Ω

(∇ũ,∇v) dx = λD1

∫
Ω

ũv dx

for any v ∈
o

H1(Ω). Applying the estimate (4.2), we obtain the inequality∫
Γ

u2
αk
ds ≤ λD1

αk
,

so ∫
Γ

ũ2ds = 0.
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Hence, we obtain that ũ ∈
o

H 1(Ω). So, the function ũ is a weak solution of the boundary
value problem

∆ũ+ λD1 ũ = 0 in Ω,(4.9)

ũ = 0 on Γ.(4.10)

Moreover, it follows from (4.5) that ũ ≥ 0 in Ω and ‖ũ‖L2(Ω) = 1. Therefore, ũ = uD, where

uD is a positive normalized eigenfunction of the Dirichlet problem (1.3), (1.4) and

(4.11) ‖uD − uαk
‖L2(Ω) → 0, k →∞.

Now, we want to show that

(4.12) ‖uD − uα‖L2(Ω) → 0, α→ +∞.

Let us suppose that (4.12) is not true. It means that there exists an ε > 0 and a sequence
αk → +∞, k →∞ such that

(4.13) ‖uD − uαk
‖L2(Ω) > ε, k = 1, 2, . . . .

Let us take a subsequence (denoted also by {uαk
}) such that (4.5) holds for some ũ ∈ H1(Ω).

But this means that ũ = uD and (4.11) holds, which contradicts (4.13). The relation (4.12)
is proved.

5. H2-convergence of eigenfunction

Let uD and uα be nonnegative first normalized Dirichlet and Robin eigenfunctions re-
spectively. Therefore,

∆uα + λ1(α)uα = 0 in Ω,(5.1)

∂uα
∂ν

+ αuα = 0 on Γ,(5.2)

∆uD + λD1 u
D = 0 in Ω,(5.3)

uD = 0 on Γ.(5.4)

By (5.1) – (5.4) the function w = uD − uα is a solution of the boundary value problem

−∆w + w =
(
λD1 + 1

) (
uD − uα

)
+
(
λD1 − λ1(α)

)
uα in Ω,(5.5)

w =
1

α

∂uα
∂ν

on Γ.(5.6)

Consider a function b(x) = (b1(x), . . . , bn(x)) ∈ C2(Ω) such that b = ν on Γ. Therefore, the
function

w̃ = w − 1

α
(b,∇uα)

is a solution of the boundary value problem

−∆w̃ + w̃ = hα(x) in Ω,(5.7)

w̃ = 0 on Γ,(5.8)
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where

hα =
(
λD1 + 1

) (
uD − uα

)
+
(
λD1 − λ1(α)

)
uα +

1

α
((b,∇uα)−∆(b,∇uα))

=
(
λD1 + 1

) (
uD − uα

)
+
(
λD1 − λ1(α)

)
uα

+
1

α

(
(b,∇uα)− (∆b,∇uα)− 2

n∑
i,j=1

(bj)xi(uα)xj − (b,∇∆uα)
)

=
(
λD1 + 1

) (
uD − uα

)
+
(
λD1 − λ1(α)

)
uα

+
1

α

(
(b−∆b,∇uα)− 2

n∑
i,j=1

(bj)xi(uα)xixj + λ1(α)(b,∇uα)
)

=
(
λD1 + 1

) (
uD − uα

)
+
(
λD1 − λ1(α)

)
uα

+
1

α

(
(1 + λ1(α))b−∆b,∇uα)− 2

n∑
i,j=1

(bj)xi
(uα)xixj

)
.(5.9)

The first eigenfunction uα is solution of the boundary value problem

−∆uα + uα = (λ1(α) + 1)uα in Ω,

∂uα
∂ν

+ αuα = 0 on Γ,

and by (2.6) satisfies

(5.10) ‖uα‖H2(Ω) ≤ C2(λ1(α) + 1), α > α1.

Now, using the estimate (5.10) and the boundary flattering procedure for proving the higher
regularity of solutions to boundary value problems associated to second-order elliptic ope-
rators ([8], Ch 4, Par. 2, No. 3, [2], Ch. 6, Par 6.3), we obtain

(5.11) ‖uα‖H3(Ω) ≤ C5‖uα‖H1(Ω) ≤ C6, α > α1,

where C5, C6 do not depend on α. Combining (1.8), (4.12), (5.9) and (5.10), we obtain the
estimate

‖hα‖L2(Ω) ≤ (λD1 + 1)‖uD − uα‖L2(Ω)

+ (λD1 − λ1(α))‖uα‖L2(Ω) +
C7

α
‖uα‖H2(Ω)

≤ C8

(
‖uD − uα‖L2(Ω) +

1

α

)
, α > α1.(5.12)

It follows from the inequality ([8], Ch 4, Par. 2, Th. 4) that

(5.13) ‖w̃‖H2(Ω) ≤ C9

(
‖uD − uα‖L2(Ω) +

1

α

)
, α > α1.
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Combining (3.5), (5.11), (5.12) with (5.13), we get

‖uD − uα‖H2(Ω) =
∥∥∥w̃ +

1

α
(b,∇uα)

∥∥∥
H2(Ω)

≤ ‖w̃‖H2(Ω) +
1

α
‖(b,∇uα)‖H2(Ω)

≤ C10

((
‖uD − uα‖L2(Ω) +

1

α

)
+

1

α
‖uα‖H3(Ω)

)
≤ C11

(
‖uD − uα‖L2(Ω) +

1

α

)
, α > α1,(5.14)

with the constant C11 independent of α.

6. Asymptotic expansion

Proof of the Main Theorem.
For the normalized eigenfunction uD the relation (2.1) is equivalent to

(6.1) lim
α→+∞

λ1(α)− λD1
1

α

= −
∫

Γ

(∂uD
∂ν

)2

ds.

Let us note that, by (1.8), the numerator λ1(α) − λD1 in the fraction in (6.1) tends to zero
when α → +∞. By the formula ([4], Th. 1, Form. (7)) and the boundary condition (1.2)
we have

λ′1(α) =

∫
Γ

u2
αds =

1

α2

∫
Γ

(∂uα
∂ν

)2

ds,

where uα is the first normalized eigenfunction of the problem (1.1), (1.2). Therefore,

(6.2) lim
α→+∞

λ′1(α)

− 1

α2

= − lim
α→+∞

∫
Γ

(∂uα
∂ν

)2

ds.

Let us prove that

(6.3) lim
α→+∞

∫
Γ

(∂uα
∂ν

)2

ds =

∫
Γ

(∂uD
∂ν

)2

ds.

By the inequalities (3.27), (3.29), (4.12) and (5.14) we have∫
Γ

(∂uD
∂ν
− ∂uα

∂ν

)2

ds ≤
∫

Γ

|∇(uD − uα)|2ds

≤ C
(∥∥∇2(uD − uα)

∥∥2

L2(Ω)
+
∥∥∇(uD − uα)

∥∥2

L2(Ω)

)
≤ C‖uD − uα‖H2(Ω) → 0, α→ +∞.(6.4)

Using (6.4), we obtain the relation (6.3). Now, by L’Hôpital’s rule the equality (6.1) follows
from (6.2).The proof of the Main Theorem is completed.
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